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Abstract

Visual tracking involves generating an inference about
the motion of an object from measured image locations in
a video sequence. In this paper we present a unified frame-
work that incorporates shape and illumination in the con-
text of visual tracking. The contribution of the work is
twofold. First, we introduce a a multiplicative, low di-
mensional model of illumination that is defined by a linear
combination of a set of smoothly changing basis functions.
Secondly, we show that a small number of centroids in this
new space can be used to represent the illumination condi-
tions existing in the scene. These centroids can be learned
from ground truth and are shown to generalize well to other
objects of the same class for the scene. Finally we show
how this illumination model can be combined with shape
in a probabilistic sampling framework. Results of the joint
shape-illumination model are demonstrated in the context
of vehicle and face tracking in challenging conditions.

1. Introduction

Visual tracking involves generating an inference about
the motion of an object from measured image locations in
a video sequence. Unfortunately, this goal is confounded
by sources of image appearance change that are only partly
related to the position of the object in the scene. For exam-
ple, unknown deformations, changes in pose of the object,
or changes in illumination can cause a template to change
appearance over time and lead to tracking failure.

Shape change for rigid objects can be captured by a low-
dimensional shape space under a weak perspective assump-
tion. Thus tracking can be considered as the statistical in-
ference of this low-dimensional shape vector. This inter-
pretation forms the basis of several tracking algorithms in-
cluding the well-known Condensation algorithm [7] and its
variants. A similarly concise model is required if we are to
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(a) (b)
Figure 1. Tracking a car across drastic illumination change. (a)
A template constructed for the vehicle in sunlight will change ap-
pearance as it enters shadow and traditional shape-tracking fails.
(b) The histogram of the zeroth coefficient of our illumination
model. This work shows how the modes of these distributions are
sufficient to accurately track though both shape and illumination
change.

robustly estimate illumination changes in a statistical track-
ing framework while avoiding undue increase in the dimen-
sionality of the problem. This is the topic of this paper.

The study of appearance change as a function of illumi-
nation is a widely studied area in computer vision [2, 11, 1].
These methods focus on accurate models of appearance un-
der varying illumination and their utility for object recogni-
tion. However they typically require an explicit 3-D model
of the object which somewhat limits their application to
surveillance applications. A general yet low-dimensional
parameterization of illumination has thus far been elusive
in a tracking context.

In this work we focus on the problem of tracking objects
through simultaneous illumination and shape change. Ex-
amples include monitoring vehicles that move in and out
of shadow or tracking a face as it moves thorough differ-
ent lighting conditions in an indoor environment. The ap-
proach is intended for use in traditional video surveillance
and monitoring tasks where a large number of illumination
samples of each object to be tracked are unavailable [6] and
features that are considered to be invariant to illumination
are known to be unreliable [2].

The contribution of the work is twofold. First, we intro-



duce a a multiplicative, low dimensional model of illumi-
nation that is computed as a linear combination of a set of
Legendre functions. Such a multiplicative model can be in-
terpreted as an approximation of illumination image as dis-
cussed in Weiss [12]. Although the model is not intended
to be applied for recognition tasks under differing illumina-
tion, it is sufficient to capturing appearance variability for
improved tracking. The Legendre coefficients together with
the shape vectors define a joint shape-illumination space.
Our approach then is to estimate the vector in this joint
space that best transforms the template to the current frame.
This is in contrast to approaches that adapt the template over
time by modifying a continuously varying density [3, 13].
Direct adaption of the template requires careful selection of
adaption parameters to avoid problems of drift [10].

In alternative formulation of the problem Freedman and
Turek [4] introduce an illumination invariant approach to
computing optic-flow that can be used to localize object
templates. The method was shown to be quite robust at
tracking objects through shadows. However it is computa-
tionally expensive and it is unclear how known system dy-
namics can be integrated within the approach. We do not
seek illumination invariance but instead estimate the illumi-
nation changes using our model as part of the tracking pro-
cess. However, use of illumination invariant optic flow as a
low-level primitive could be used in combination with the
work here to inform the shape space sampling distributions
and is the subject of future work.

When using this joint shape illumination space for track-
ing, it is no longer obvious how this space should be sam-
pled. For example, Figure 1a shows a vehicle that moves
from bright sunlight to shadow. Because this transition
can occur instantaneously between frames, the smoothness
assumptions that are used to derive the sampling distribu-
tion for shape cannot are often violated for the illumina-
tion component. Furthermore, the additional degrees-of-
freedom that it are required to model illumination can lead
to decreased robustness at runtime or require an inordinate
number of tracking samples in each frame. However, we
discover the surprising result that a small number of cen-
troids extracted from the underlying distributions of our il-
lumination coefficients are often adequate to represent the
influence of most of the illumination conditions existing in
the scene. Figure 1b shows a distribution of the zeroth or-
der coefficient in our model for the car moving through the
scene in Figure 1a. In Section 3.1 we discuss how important
modes of these distributions are extracted and used to track
through drastic illumination changes such as these.

2. A Multiplicative Model of Appearance
Change due to Illumination

The image template throughout the tracking sequence
can be expressed as:

Ut(x, y) = Lt(x, y)R(x, y) (1)

where Lt(x, y) denotes the illumination image in frame t
and R(x, y) denotes a fixed reflectance image [12]. Thus
if the reflectance image of the object is known, tracking be-
comes the problem of estimating the illumination image and
a shape-vector.

Of course, the reflectance image is typically unavailable
and the illumination image can only be computed modulo
the illumination contained in the image template shown in
Equation 2.

Lt = L̃tL0R(x, y) (2)

where L0 is the initial illumination image and L̃t is the un-
known illumination image for frame t.

Our proposed model of appearance change, then, is sim-
ply the product of the input image with a function ft(x, y)
that approximates Lt and is defined over the image domain,
P×Q. A naive way of compensating for appearance change
then is to allow each f(x, y), x = 1, · · · , P, y = 1, · · · , Q
to vary independently. However, it is known that for a con-
vex Lambertian object, the change in appearance of neigh-
boring pixels is not independent and the excessive addi-
tional degrees-of-freedom can make the tracking problem
intractable.

Instead we construct the illumination compensation im-
age f from a linear combination of a far lower dimensional
set of n basis functions. In order to be useful, the basis func-
tions must be both both orthogonal in the 2D image domain
and straightforward to compute. Furthermore they must be
capable of spanning most of the appearance changes in the
template due to illumination. For the work here we utilize
the Legendre polynomial basis although any other polyno-
mial basis will suffice. To give an idea about the type of
variation the basis supports, Figure 2 shows the Legendre
basis of order three.

Let pn(x) denote the nth Legendre basis function. Then,
for a given set of coefficients Λ = [λ0, · · · , λ2n]T , the
scaled intensity value at a pixel is computed as:

Û(x, y) = (
1

2n + 1
(λ0 + λ1p1(x) + · · · + λnpn(x) + (3)

λn+1p1(y) + · · · + λ2npn(y)) + 1)U(x, y)

For purposes of notation, we will denote the effect of Λ on
the image as

∆ΛU ≡ U ⊗ PΛ + U (4)

where
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Figure 2. First seven Legendre basis functions used to track illumination change in an image template.

P =




1
2n+1p0 · · · 1

2n+1pn(y1)
...

...
...

1
2n+1p0 · · · 1

2n+1pn(yPQ)


 . (5)

We define ⊗ as an operator that scales the rows of P with
the corresponding element of U written as a vector. Given
an input template T and an image U , the Legendre coeffi-
cients that minimize the error between ∆.ΛU and T can be
computed by solving the least squares problem,

U ⊗ PΛ ≈ T − U. (6)

Each of the basis functions is scaled by a particular
choice of Λi and then linearly combined using Equation 4
to derive a illumination image.

Figure 3 demonstrates how how this low-dimensional
set of Legendre polynomials can accommodate illumination
change. Figure 3a is an input template and Figure 3b is the
same image template relit from a different direction. Us-
ing an a least squares fit for Λ, a new image that is more
similar in appearance to the target image is generated (see
Figure 3c).

3. A Joint-space of Illumination and Shape for
Tracking

For the sake of generality, we assume an NS-
dimensional shape space and a Nλ-dimensional illumina-
tion space that results in a joint space AL = L(W, T,∆).
that maps a joint shape and appearance vector XA ∈
R

NS+Nλ :

XA =
[

X
Λ

]
(7)

to a deformed and relit template, U ∈ R
NT :

U = [∆Λ] [I (WX + T )] . (8)

(a) (b) (c)

Figure 3. An example of illumination compensation using a low-
dimensional multiplicative model. (a) Input template. (b) Input
image under new illumination. (c) Synthesized image that is the
product of illumination basis functions with the input.For this ex-
ample a third order Legendre polynomial was used and the Legen-
dre coefficients were computed using (6).

W denotes a NT ×NS shape matrix. The constant offset
T denotes the template against which shape variations are
measured. No such offset is required for the illumination
component. I(·) simply refers to the image intensities mea-
sured on the shape grid implied by the shape component of
XA.

The proposed joint shape-illumination space can be sam-
pled sequentially to track objects through a range of shape
and illumination changes. This is best accomplished in a
robust way using a particle filter framework. Particle filters
(PF) are very widely studied in computer vision and differ-
ent variants of its implementation exist [13, 9]. Two im-
portant components of a PF include a state evolution model
p(XA

t |XA
t−1) and an observation model p(Yt|XA

t ). The PF
tracker approximates the posterior density, p(XA

t |Y1:t) with
a set of weighted particles {(XA)j

t , w
j
t } with

∑M
j=1 wj

t =
1. The likelihood p(Yt|XA

t ) of a particular hypothesis and
in the case of the joint shape-appearance model is computed
using the transformed image and the template. A likelihood
measure on the joint shape-illumination hypothesis XA

i is



computed as the sum of absolute difference (SAD) between
U and T .

The other component of PF tracking is the specification
of p(XA

t |XA
t−1). Typically a Gauss-Markov model is as-

sumed, whereby XA
t+1 ∼ N (XA

t , V ). In the absence of
any knowledge about the expected range of motion and il-
lumination change, a brute force approach is required and
the variance on the normal distribution of each component
in XA is set to a high value. This necessitates an unreason-
able increase in the number of particles in order to maintain
reliable tracking and such an approach is now more likely
to suffer from local minima. With the additional dimen-
sions that the new model implies, the problem can be even
more formidable than traditional shape tracking where re-
cent work has studied how more informed sampling distri-
butions for shape tracking can be derived [8]. In the follow-
ing section we outline how meaningful sampling densities
for illumination can be learned from a few examples and
show that these densities can in fact are degenerate. As a
result, the new model can be represented by several cen-
troids in the Legendre basis.

3.1. Learning Sampling Distributions for Illumina-
tion and Shape

We assume that we have a static camera acquiring im-
ages of a scene and that the illumination conditions, al-
though variable within the scene, do not change signifi-
cantly over time. Ground truth video sequences consisting
of a starting template T and its location and shape in sub-
sequent frames, {U1, · · · , UN} are used to compute shape-
vectors {X1, · · · , XN} corresponding to this motion. Fur-
thermore, a set of Legendre coefficents {Λ1, · · · , ΛN} that
best map {U1, · · · , UN} to T are computed via standard
least squares fitting (6).

The shape sampling distribution h(X) must model the
incremental motion between frames. For smooth motions,
shape distributions can be computed from shape difference
vectors {X2 − X1, · · · , XN − XN−1}. Standard kernel-
density methods can then be used for estimating a sam-
pling distribution from using these differences. Alterna-
tively a uniform density U(a, b) corresponding to the max-
imal ranges of state components can be used as a simple
approximation of h(X).

In the case of our new illumination model, sampling dis-
tributions in the Legendre space must be estimated. It is
natural to consider whether a differential model similar to
the one used for X is suitable in this regard. Figure 6
illustrate the problem with such an approach for the illu-
mination space. Although components of shape space are
more or less smoothly monotonic (Figure 4c), this is not the
case for the illumination coefficents. For example, the first
coefficents, λ0, changes dramatically as the subject moves
through differing illumination. The result is a trajectory that

cannot be modeled by considering discrete differences (Fig-
ure 4d).
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Figure 4. Difficulty of using a differential model for building a
sampling distribution for illumination (a) and (b) show images of
a person walking in a hallway towards the camera (c) shows the
y-translation component of X and (d) shows the λ0 coefficient of
Λ as a function of time. As can be seen even for smooth motions,
the illumination component displays discontinuities.

(a) (b)

(c) (d)
Figure 5. Our approach is motivated by the fact that certain domi-
nant illumination conditions can be quantized into a few centroids
in the illumination space. For example, in this scene some of the
salient illumination conditions are: (a) subject is diffusely lit from
above (b) subject passes thorough shadow, (c) subject strongly lit
from the side, and (d) subject in darker region of room near cam-
era.

One approach to this problem is to identify subregions of
monotonicity and then build a mixture of distributions us-
ing discrete differences that are particular to each. However



one direct consequence of using these distributions is that
the number of particles needed to span the corresponding
regions in illumination space will be extremely large adding
an additional computational burden on top of the traditional
shape space sampling. Clearly a more efficient way of sam-
pling the illumination space must be found if the resulting
algorithm is to be useful.
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Figure 6. A plot of the SAD error as a function of time. The red
dashed line represents the situation with no illumination compen-
sation. The blue dash-dotted line represents the compensation with
the least squares fit for Λ The green solid line represents compen-
sation with the vector quantized values of the least square fits. The
black crossed line represents compensation with a random Λ.

Although the underlying distribution of Λ is of course
continuous, we can discard much of this information in fa-
vor of tracking robustness by seeking the most important
illumination modes that are present in the distribution. This
step is motivated by the observation that a scene is typi-
cally composed of a discrete set of illumination conditions.
For example, the underlying illumination distribution for
the scene shown in Figure 4 arises from certain salient il-
lumination conditions in the scene as shown in Figure 5.

In order to achieve an efficient sampling of the il-
lumination space we perform a k−means clustering
{Λ1, · · · , ΛN} and use the k centroids c1, · · · , ck as a rep-
resentation of the illumination space.

To demonstrate that clustering in this way does not de-
grade our ability to track, we studied many face tracking ex-
amples under different illumination conditions. The results
support the claim that only a few modes are needed instead
of the entire distribution. For example, Figure 6 show the
SAD score achieved for a typical face tracking process us-
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Figure 7. The range of Λ as a function of time shown for two
individuals for a 2nd order Legendre polynomial fit. The similarity
in the range of values taken by different components of Λ can be
seen from the plot. As a consequence the centroids describing the
illumination conditions in a scene for different people are close.

ing several different approaches. Both random selection of
Legendre coefficents and no compensation lead to high er-
ror. More importantly, the plot shows nearly no difference
between exact least-squares fits of a second order Legen-
dre that utilizes only six centroids discovered via k−means
clustering process.

This result is typical of most situations and a rate-
distortion study found that k = 6 is adequate to represent
the variability of Λ for our indoor surveillance senario. Fig-
ure 7 shows the result of least-squares fits to the first four
Legendre coefficents for two different subjects. Note that
the range of variability is nearly the same for both subjects
justifying our use of the same centroids to represent several
subjects from the same scene.

These results allows us to coarsely sample the illumi-
nation space with minimal impact on the tracking results
while retaining the ability to generalize to previously un-
seen objects within the same class. This requires only minor
modification to the standard particle filter that incorporates
the k illumination clusters. Specifically for every particle j,
drawn from h(X), we sample i from {1, · · · , k} with prob-
ability 1

k and compute

U = [∆Λci]
[
I

(
WXj

t + T
)]

(9)

before measuring the SAD distance. The new algorithm,
then, combines traditional shape tracking with our multi-
plicative model of illumination compensation. Table 1 sum-
marizes the joint shape-illumination tracking algorithm.



Given: an estimate of shape sampling distributions,
h(X) and k cluster centers, c1, ..., ck in the
illumination basis.

1. Initialize sample set X =
{

Xj
0 , 1/M

}
2. For t = 1, · · · , T

3. For j = 1, · · · , M

4. Generate X ′j
t from Xj

t−1 using h(X)
5. Compute transformed image regions in

accordance with shape vectors X ′j
t

6. Pick an i from {1, · · · , k} with probability 1
k

7. Compute U using (9)

8. Compute likelihood p(Yt|X
′j
t ) by

measuring the SAD distance between
U and T

9. End
10. Importance resample {X ′j

t }
based on {p(Yt|X ′j

t )} to get {Xj
t }

11. End

Table 1. The Particle Filter using the new shape-illumination
space.

4. Experimental Results

We now demonstrate the utility of the joint shape-
illumination model in two different scenarios. The results
discussed here are indicative of results the system achieved
for many such sequences. For example, in the car sequence
twenty cars were successfully tracked over a period of two
hours1 In each case we follow the procedure described in
Section 3.1 to establish sampling distributions in the joint-
space over some set of training samples. Tracking was then
performed using 200 particles on new objects using the al-
gorithm in Table 1.

The car dataset was generated from a camera observ-
ing a road from above as cars approach an intersection and
move in and out of shadow. Two sequences were used to
acquire the sampling distributions. Training involved mark-
ing locations of the moving car in successive frames. Using
these locations the corresponding shape-vector was com-
puted. We used a 3-D shape space that spans scaling and
translations in X and Y. Using the maximal values of the
shape difference vectors, a uniform distribution over the
corresponding range was computed for each shape compo-
nent. Using the least squares method (see Section 6) we
fit different orders of Legendre polynomials and computed
the resulting SAD error. We found that a first order Leg-
endre polynomial was adequate to capture the illumination
change in this case where the object is more or less planar.
The k−means clustering process yields two centers {c1, c2}

1The cars were arbitrarily picked in the sequence and initial locations
of the cars were hand extracted and passed on to the tracker

that were then used to represent the discretized illumination
space.

Figure 8 shows tracking results for a car using the joint
shape-illumination tracker. The white square corresponds
to the MAP estimate for that frame. The new tracking al-
gorithm is compared to a traditional particle filter that does
not encompass illumination change (Figure 8 bottom row).
The same shape sampling distributions were used by both
algorithms.

The particle filter tracks the template well as long as
the illumination conditions that existed when the template
was captured remain unchanged. However, at the shadow
boundary the traditional tracker fails. On the other hand,
the new illumination model captures this appearance change
and the joint shape-illumination likelihoods remain high for
the correct estimate via the additional degree-of-freedom af-
forded by the illumination model.

A second dataset contained several different subjects
moving through different illuminations in an indoor envi-
ronment. The illumination conditions in this case were sig-
nificantly more complex than the vehicle tracking dataset.
Sunlight through window and different light sources (i.e.
fluorescent overhead lamps and incandescent desk lights)
persist throughout the space making the dataset very chal-
lenging. In fact, to test the algorithm a strong diffuser
lamp was placed in a room to generate strong side light-
ing (see Figure 9). Ground truth was again generated from
two different sequences. A second order Legendre poly-
nomial was chosen for the illumination component. Using
rate-distortion studies as discussed in Section 3.1, we found
that around six clusters were required to capture the vari-
ability in the scene. Here we discuss tracking results when
six clusters were used. Using more centroids does not lead
to degradation of the results, however it requires an addi-
tional number of particles.

Figure 9 shows two different subjects moving through
various illumination conditions as they approach a surveil-
lance camera. These sequences are typical for this setup and
only three frames are shown in the interest of space.

Figure 10 shows the initial template for each subject and
the illumination image generated by the illumination cen-
troid associated with the MAP estimate. This illumination
image was multiplied to the grid indicated by the shape vec-
tor in the frames shown in Figure 9. As can be seen these
illumination images are able to compensate for the illumi-
nation changes in the sequence.

5. Conclusions and Future Work

In this paper we presented an approach to track across
shape and illumination change. We introduced a low-
dimensional multiplicative model of illumination change
that is expressed as a linear combination of a Legendre ba-
sis. We demonstrated how this new model is capable of



Figure 8. Example of tracking a car through drastic illumination changes. The bottom row shows the result using a conventional particle
filter while the top row shows the result using our algorithm.

(a) (b) (c)

(d) (e) (f)

Figure 9. Example of tracking faces in an indoor setting. The illumination conditions existing in this scenario are significantly more
complex than those in the vehicle tracking situaion.

capturing appearance change in the tracked template. We
showed how the Legendre coefficients can be combined
with the shape vector to define a new shape-illumination
space. We discovered that in this new illumination space,
a small number of centroids suffice to capture illumination
changes in particular scenario. We showed how to estimate

these centroids and incorporate them in the particle filter-
ing framework at run time without adding excessive com-
putational burden. We demonstrated the utility of our ap-
proach for both vehicle and face tracking scenario. One of
the assumptions in our work is that the initial template in
the training and testing sequences are acquired under sim-
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Figure 10. Initial template and illumination images constructed from the Legendre basis that were used to model appearance change in the
sequence shown in Figure 9.

ilar illumination conditions. We expect to incorporate the
bilinear style-content factorization of Freeman and Tenen-
baum [5] to overcome this drawback. Finally, more sophis-
ticated studies involving the stability of the learned distri-
butions over time and slow illumination changes are un-
derway. Initial results indicate that the distributions can be
quite stable but may need to be re-learned over some period
over time. For example, distributions learned at dawn no
longer apply at dusk.
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