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ABSTRACT

Automatic segmentation of optic disk (OD) and cup regions
in fundus images is essential in deriving clinical parameters,
such as, cup-to-disk ratio (CDR), to assist glaucoma diagno-
sis. This paper presents a deep learning system using fully
convolutional neural networks (FCN) to perform such seg-
mentation, discusses various strategies on how to leverage
multiple doctor annotations and prioritize pixels belonging to
different regions while training the neural network. Exper-
imental evaluations on Drishti-GS dataset demonstrate that
the presented method achieves comparable and superior F-
score to prior work on optic disk and cup segmentation, re-
spectively.

Index Terms— Semantic Segmentation, Neural Net-
works, Glaucoma, Deep Learning, Fundus Imaging

1. INTRODUCTION

Glaucoma[1, 2] is a chronic and irreversible neuropathy
caused by the progressive degeneration of retinal nerve fibers.
Large scale screening programs can detect it at an early stage
and inhibit its progression through proper treatment. Glau-
coma causes structural changes in the optic nerve head, con-
sisting of the optic disk (OD) and cup, that can be measured
by the cup-to-disk diameter ratio (CDR). A CDR of at least
0.65 is considered as glaucomatous in clinical practice [1].
The difference between a glaucomatous and healthy eye is
shown in Figure 1a and 1b, respectively.

Advanced imaging methods [1, 2], such as, optical co-
herence tomography (OCT), capture 3D information that is
used by experts to identify cup and disk boundaries. How-
ever as these methods are expensive, color fundus imaging
(CFI) [3] is used as non-invasive and inexpensive alternative
for large scale screening. In CFI, a monocular camera cap-
tures a projection of the fundus onto a 2D plane. Due to a lack
of depth information, an expert takes eight minutes to anno-
tate each image [4]. Hence, an automated system that marks
the boundaries will be extremely helpful. Although several
segmentation methods exist [5, 6, 7], generation of a reliable
cup boundary from the CFI is still a challenging task due to
the lack of a clear visual demarcation between the cup and
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Fig. 1: Cup and Disk boundaries (green) for (a) Glaucoma-
tous eye and (b) Healthy eye. Disagreement amongst annota-
tors for a (c) sample image on (b) optic disk boundary, and (c)
cup boundary; brighter pixels mean higher consensus among
experts.

the disk. This is also shown in Figure 1e as a large amount of
disagreement among experts while marking the cup boundary
for a sample image from Drishti dataset [3].

Prior work using classical methods can be broadly clas-
sified into monocular and stereo based methods. In [6], the
authors estimate depth discontinuity at the cup boundary by
relating sequentially acquired images via a motion model.
Chakravarthy et al. [5] model relative depth and discontinu-
ity on cup boundary by correlating color, shading, and tex-
ture gradients to depth maps from OCT. Aquino et al. [8]
use a combination of morphological features, edge detection,
and hough transforms to fit OD boundary while [9] uses an
active-contour based approach to parameterize OD. In [10],
edge and wavelet transforms are used to identify small vessel
bends (kinks) to establish the cup boundary.

Zilly et al. [7] train a set of convolution filter banks as
linear-regressors over the groundtruth of extracted patches.
Pre-processing consists entropy filtering, color space conver-
sion and contrast normalization. Due to the complex training
regime, test images are cropped on the optic disk before in-
ference. Similarly, [11] follows the same pre-processing and
training routine as [7], while adding a bias and regularization
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term to the objective.
In recent years, deep convolutional neural networks [12]

(CNN) have shown state of the art performance on several
challenging tasks, such as, image classification and semantic
segmentation. A popular architecture used for semantic seg-
mentation is fully convolutional network (FCN) [13], which
uses a VGG16 based encoder-decoder network with skip con-
nections to perform one-shot inference on full-scale images.
Thus we choose the FCN architecture as the basis of our so-
lution.

In [4], the authors train a shallow CNN for cup and disk
segmentation on 48x48 patches from MESSIDOR and SEED
database. Deep Retinal Image Understanding [14] uses fea-
tures extracted from a CNN pre-trained on ImageNet [15]
along with specialized convolution layers to predict blood
vessels and OD from CFI. Unlike [4] and [14], we focus on
the problem of OD and cup segmentation instead of blood
vessels from the Drishti database, leverage multiple annota-
tions, and seek to perform one-shot segmentation on full scale
images. In [16], the author trains two UNets [17], for cup and
disk segmentation separately. In this two-stage approach, the
input image is resized to 256x256, heavily pre-processed and
inferenced twice to predict cup and disk boundary. Instead
we propose a one-shot segmentation pipeline that works on
full-scale images and uses a simple post-processing method.
Both [14] and [16] have acknowledged that segmentation of
OD can be automated to human level accuracy but that of cup
is non trivial.

Our main contributions are summarized below.

1. Present a system using FCN8s architecture that gener-
ates cup and disk segmentation in a single shot using
one deep neural network on full resolution images.

2. Propose various strategies of utilizing multiple ex-
pert annotations and prioritizing certain regions during
training for optimal boundary retrieval.

We also use a post-processing technique (section 3.2) that
filters out network predictions to reduce false positives. Com-
parison on the Drishti dataset against prior work [9, 6, 3, 11,
16] shows comparable and superior F-scores in disk and cup
segmentation, respectively.

Paper Organization. In Section 2 we present the prob-
lem statement and a comprehensive description of Drishti-GS
dataset. Section 3 presents system overview along with de-
tailed description of underlying components and strategies.
Experimental results are discussed in section 4. Finally, sec-
tion 5 concludes the paper with future work.

2. PROBLEM STATEMENT AND DATASET

The problem of optic disk (OD) and cup segmentation is
posed as a ternary classification problem, where each pixel of
an input CFI image is classified as cup, disk, or background.

Though there are datasets available for OD segmentation
[1, 18], only Drishti-GS dataset [3] has both OD and cup
annotations by multiple experts. It consists of two sets of
CFI images: 50 for training and 51 for testing. A subset of
10 images from training set is kept aside for validation pur-
poses. Groundtruth (GT) for each OD and cup is provided
by four ophthalmologists as a softmap shown in Figures 1d
and 1e, respectively. To be comparable with prior work, we
set the groundtruth by taking the consensus of three or more
doctors. In order to leverage CNNs effectively and introduce
invariance, we augment the training data by horizontal and
vertical flips, yielding a total of 160 training images. Instead
of downsampling images, we take a center crop of 1200 x
1600, thus preserving the fidelity of the original image. On
an average, each image in the dataset consists of 2.84% cup
pixels, 2.86% disk pixels (after subtracting cup pixels inside
disk region), and 94.3% background pixels.

3. SYSTEM OVERVIEW

A fully convolutional network (FCN) [13] with a stride of
8 pixels is chosen as an underlying architecture due to con-
sistent semantic segmentation performance on other public
datasets. It consists of a VGG16 encoder along with a decoder
comprising upsampling layers and skip-connections that can
be trained in an end-to-end fashion using a pixel-wise cross-
entropy loss. Due to limited number of training images, the
fcn encoder is initialized with weights from a model trained
on ImageNet [15]. Additionally, as shown in Figure 2g, we
use weighted loss based on a weight mask to prioritize pixels
during the training process. During inference, the predicted
segmentation is passed through a filtering module that cleans
up noisy regions to generate clean OD and cup boundaries.

3.1. Strategies

In order to rightly capture the disagreement in annotations
amongst experts and to account for the relatively small area
occupied by OD and cup regions in comparison to the back-
ground, we design the following five experiments.

1. Exp1: This is a vanilla experiment which trains a FCN
using a CFI image and the GT generated as in Section
2. Each pixel contributes equally to the loss.

2. Exp2: To account for the imbalance between the num-
ber of background pixels and cup/OD pixels, we use a
weighted loss that assigns a 10x higher loss to pixels
belonging to OD/cup regions in this experiment. The
weight mask in Figure 2c is a grayscale image that en-
codes this weighing scheme and is passed as an input
to a weighted cross-entropy loss layer.

3. Exp3: The accuracy of CDR depends upon the quality
of the boundaries generated by the neural network. In
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Fig. 2: Data and System overview. (a) input image, (b) groundtruth (inner to outer:cup, disk, and background), (c) weight mask
(pixel values of OD and cup:10, background:1), (d) boundary weight mask (pixel values of OD and cup boundaries of 5 pixels
width:10, rest:1), (e) ignore disagreement (white) pixels in groundtruth, and (f) soft disagreement weights (weight decreases
with pixel brightness). (g) Training of FCN involves minimization of cross entropy loss between groundtruth and the network
output through backpropagation. Inputs (shown in green) are the RGB image, groundtruth segmentation and an optional weight
mask (dotted box).

(a) (b) (c) (d)

Fig. 3: Post processing. (a) input image, (b) groundtruth, (c)
network output, and (d) filtered output.

order to bake this constraint into optimization problem,
we use a weighted loss like Exp2, however, we assign a
10x higher loss to pixels belonging only to the OD and
cup boundaries as shown in Figure 2d. Our reasoning
behind this masking is that the network will now try to
learn features to yield better boundaries.

4. Exp4: As shown in Figures 1e and 1d, annotators often
disagree on the exact cup and disk boundaries. Since
this disagreement might lead to poor convergence, we
set their GT value to 255 as shown in Figure 2e so as to
ignore the loss due to these regions. We now expect our
network to learn distinctive features that are commonly
looked at by all experts, rather than overfitting to an
individual.

5. Exp5: To bridge the ideas of Exp3 and Exp4, in this ex-
periment, we use a mask that is weighted by the amount
of disagreement among experts, i.e., less weight for
pixels with high disagreement as shown in Figure 2f.

3.2. Post processing

In order to reduce false positives and generate clean cup and
disk boundaries, we use a filtering module on top of the net-
work predictions. Figure 3 shows the impact of this module.

1. Remove regions with area less than 100 pixels to filter
out small false positives.

2. Filter out regions where cup is not inside disk and keep
the pair with maximum disk area.

3. (optional) Approximate contour points by an ellipse to
obtain smooth boundaries.

4. EXPERIMENTAL RESULTS

Experiments are conducted on a system running Ubuntu 16.04
with a Nvidia K80 having 12GBs of GPU RAM. The train-
ing set of 40 images is augmented to 160 using image flips.
Validation and test set contain 10 and 51 images, respectively.
Each experiment in section 3.1 is trained for 100 epochs using
an Adam optimizer with an initial learning rate of 1e-9. The
FCN8s network with 134M parameters is initialized with Im-
ageNet weights. We also apply a dropout of 0.5 after fc6 and
fc7 layers to help with generalization on our limited dataset.
We validate using the intersection over union metric as de-
fined in Equation 1, where TP, FP, FN denote true positives,
false positives, and false negatives, respectively. In order to
compare with previous work on Drishti dataset, we also report
F-scores as defined in Equation 2 where cup is considered as
part of disk while computing disk F-score.

IoU =
TP

TP + FP + FN
(1)
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Table 1: IoU evaluation

(a) Best validation set checkpoint

Segmentation Strategies
IoU Exp1 Exp2 Exp3 Exp 4 Exp5

Mean 0.8509 0.8559 0.8660 0.8823 0.8055
Cup 0.8055 0.8240 0.8284 0.8450 0.7640
Disk 0.7507 0.7482 0.7743 0.8030 0.6591
Void 0.9964 0.9957 0.9962 0.9970 0.9926

(b) Test Set

Segmentation Strategies
IoU Exp1 Exp2 Exp3 Exp4 Exp5

Mean 0.8346 0.8341 0.8266 0.7940 0.7795
Cup 0.8122 0.8139 0.7920 0.7720 0.7660
Disk 0.6958 0.6931 0.6911 0.6160 0.5802
Void 0.9959 0.9952 0.9959 0.9940 0.9917

Table 2: F-score comparison with prior state of the art

cup disk
G. D. Joshi et al. [9] 0.84 0.97
G. D. Joshi et al. [6] 0.85 –
J. Sivaswamy et al. [3] 0.79 0.96
J. Zilly et al. [11] 0.871 0.973
A. Sevastopolsky [16] 0.85 –
Proposed Exp1 0.897 0.967

F − score =
2 ∗ TP

2 ∗ TP + FP + FN
(2)

Table 1a reports cup, disk, background, and mean IoU val-
ues of the best epoch for each experiment on validation set. It
is observed that Exp4 which ignores regions of disagreement
among experts outperforms all other experiments and Exp5
which is an application of soft disagreement weights is an un-
der performer. An examination of training curves reveal that
Exp4 demonstrates less fluctuation over epochs while main-
taining a higher mean IoU value. It is also observed that Exp2
exhibits quick learning during initial epochs due to the prior-
itization of regions. For large datasets where compute is lim-
ited, Exp2 could yield a reasonable accuracy in fewer epochs.

The best model is applied to the test set and the results are
documented in Table 1b. It is observed that Exp4 which per-
formed well while validating does not generalize well to the
test set, however, Exp1 performs remarkably well and gives
the best results, closely trailed by Exp2. A visual inspection
of the dataset confirms that there is a difference between the
distribution of training and test sets, with images in the test set
being taken from a different pool of participants. However, to
compare with prior work, we did not alter the data split.

Table 2 lists comparison of Exp1 with prior work. F-score
of cup on test set is improved by 3.1% while that of disk is
competitive. As mentioned earlier, reason for high disk F-
scores across the board is due the low ambiguity in expert
markings and the clear visual demarcation of the nerve head.
Cup boundaries are harder to distinguish as shown in Figure
1e due to large disagreement among experts.

Figure 4 shows visualizations of a good and a bad pre-
diction on the test set. A good prediction in Figure 4a has

predicted boundaries (blue) that are close to groundtruth an-
notations (green). This is due to a visible boundary between
cup, disk, and background regions. The bad prediction from
in Figure 4b shows that the performance of the network de-
teriorates when there is no visible transformation from OD to
cup.

(a) (b)

Fig. 4: Visualizations of results (a) well performing sample,
(b) under-performing sample. GT boundary is in green and
network predictions are in blue.

5. CONCLUSIONS AND FUTURE WORK

An automatic system to segment optic disk and cup from
color fundus images is presented using deep learning. Unlike
previous methods, the system predicts OD and cup bound-
aries in a single pass using fully convolutional networks and
does not require resizing of original image or cropping to OD
region for cup prediction. A brief discussion of various strate-
gies on how to leverage multiple expert annotations and pri-
oritize pixels belonging to different regions while training the
neural network is presented along with extensive experimen-
tal results. Experimental evaluations on Drishti-GS dataset
have shown comparable and superior F-score to prior art for
optic disk and cup segmentation, respectively. Due to the
complexity of the network, a focus of future work is on us-
ing network pruning techniques for parameter reduction, in-
ference acceleration, and coming up with a compact architec-
ture.
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