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ABSTRACT

In this paper, we systematicallyanalyzedifferentcomponentsof
humangait, for the purposeof humanidentification. We inves-
tigatedynamicfeaturessuchas the swing of the hands/legs, the
sway of the upper body and static featureslike height, in both
frontal and side views. Both probabilisticand non-probabilistic
techniques areusedfor matchingthe features.Variouscombina-
tion strategiesmaybeuseddepending uponthegait featuresbeing
combined. We discussthreesimplerules: the Sum,Productand
MIN rulesthatarerelevant to our featuresets.Experimentsusing
four differentdatasetsdemonstratethat fusion canbe usedasan
effective strategy in recognition.

1. INTRODUCTION

Biometrics,suchasface,voice/speech,iris, fingerprints,gait etc.
have come to occupy an increasinglyimportant role in human
identificationdue,primarily, to their universalityanduniqueness.
Facerecognition systemshave goodperformancewith canonical
views at high resolutionand good lighting conditions. Current
iris recognitionsystemsaredesignedto work when the subjects
areplacedat relatively closedistancesfrom the imagingsystem.
A possiblealternative is gait or simply, the way a personwalks.
While medicalstudies[1] have shown thatgait is indeeda unique
signatureof humans,all thecomponentsconsidered,psychophys-
ical evidence[2] also points to the viability of gait recognition.
Gait,anon-intrusivebiometric,canbecapturedby camerasplaced
atadistance.Illuminationchangesarenotacausefor seriouscon-
cern. In particular, it might even be attemptedin night-timecon-
ditions usingIR imagery. The potentialapplicationsof gait anal-
ysis/recognitionsystemsincludeaccesscontrol, surveillanceand
activity monitoringandkinesiology.

Weknow from ourexperiencethatgaitandpostureprovideus
with cuesto recognizepeople.Considera familiarpersonwalking
atasufficiently largedistancesothatthefaceis not clearlyvisible
to thenaked eye. To recognizetheperson,we maytry to combine
informationsuchasposture,arm/leg swing,hip/upperbody sway
or someunique characteristicof thatperson.Generallyspeaking,
informationmaybefusedin two ways.Thedataavailablemaybe
fusedanda decisioncanbemadebasedon thefuseddataor each
signal/featurecanbematchedseparately, usingpossiblydifferent
techniques andthe decisionsmademay be fused. The former is
calleddatafusion while the latter is decisionfusion. Kokar et al.
[3] have shown that decisionfusion is a specialcaseof datafu-
sion. Note however, that the converse relationshipneednot be
�
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true. Consequently, datafusion,which tendsto bemorecomplex
to implement,neednot bea bottleneck.

In this paper, we investigatedifferent techniquesto combine
classificationresultsof multiple measurementsextractedfrom the
gait sequencesand demonstrate the improvement in recognition
performance. Threedifferentsetsof featuresareextractedfrom
the sequence of binarizedimagesof the walking person.Firstly,
we investigatethe swing in the hands andlegs. Sincegait is not
completelysymmetricin thattheextentof forwardswingof hands
and legs is not equal to the extent of the backward swing, we
build the left andright projectionvectors. To matchthesetime-
varying signals,dynamic time warping is employed. Secondly,
fusionof leg dynamicsandheightcombinesresultsfrom dynamic
andstaticsources.A hiddenMarkov model is usedto represent
the leg dynamics[4]. While the above two componentsconsider
thesideview, thethird caseexploresfrontal gait. We characterize
the performance of the recognitionsystemusing the cumulative
matchscores[5] computedusingtheaforesaidmatrixof similarity
scores.As in any recognitionsystem,we would like to obtainthe
bestpossibleperformance in termsof recognition rates. Combi-
nationof evidences obtainedis not only logical but alsostatisti-
cally meaningful.We show thatcombiningevidenceusingsimple
strategiessuchasSum,ProductandMIN rulesimprovestheover-
all performance.

Thepaperisorganizedasfollows: section2 discussesdifferent
featuresviz. handandleg swing, leg dynamics, andheight,foot
dominance and frontal gait. Section3 presentsthe experiments
performedondifferentdatasetsandSection4 concludesthepaper.

2. METHODOLOGY

We assumethat,within thefield of view of thestationarycamera,
only one personis present. This simplifies the taskof tracking.
Backgroundsubtraction[6] is usedto convert thevideosequence
into a sequenceof binarizedimagesin which a bounding box en-
capsulatesthewalking subject.All thefeaturesof interestareex-
tractedfrom the aforesaidsequence of binarizedimages. Three
aspectsof gait arediscussed:Motion of the handsand legs, dy-
namicsof the legsaloneandfrontal gait. We addressthe issueof
foot dominanceaswell. DifferentstrategiessuchasSum,Product
andMIN rules[7], asapplicablein eachof thecasesareused.

The left andright projection vectors areconstructedfrom the
imagesequence to study the motion of the handsand legs. Dy-
namic time warping is usedto match the two vector sequences
separately. The overall similarity scoreis taken to be the sumof
the two scores.Secondly, the truncatedwidth vector capturesthe
leg dynamics.HiddenMarkov modelis usedto describethemo-
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Fig. 1. Illustratingthegenerationof (a) left projectionvector, (b)
right projectionvectorand(b) width vector.

tion of the leg within a walk cycle. In the evaluationphase,the
absolutevalue of the forward log probability is recordedas the
similarity score. Thesescoresareweightedby a factor that de-
pendson theheightof thesubject.Thirdly, frontal gait sequences
arerepresentedusingthewidth vector, suitablynormalizedfor ap-
parentchanges in theheightasthesubjectapproachesthecamera.
A setof width vectorsarebuilt for the sideview andthe two are
matched,separately, usingDTW. Again, the Sumrule is usedto
combinethetwo similarity scores.

2.1. Motion of the arms and legs

In the four-limb system,we seekto find a consistentpatternby
systematicallyanalyzing(a) all the four limbs and (b) a pair of
limbs. If the degreeof couplingbetween,say, the legs is signifi-
cantlymorethanthecouplingbetweentheright leg andleft hand,
thenwe would assigna higherweight to the similarity scoreob-
tainedby comparingthe leg motion in thereferenceandtestpat-
tern.Wefirst considerthearmsandlegsof thesubject.While it is
temptingto assumethatgait is asymmetricactivity, thereexistsan
asymmetrybetweentheforwardandbackward swingof thelimbs.
Maintainingthis dichotomy, we build the left andright projection
vectorsasfollows. Givena binarizedimage,wefirst align thebox
so that the subjectis in the centerof the bounding box. The left
andright projectionvectorsarecomputedasillustratedin Figure
1 (a) and(b) respectively.

After featureselectionand extraction, the next logical step
is matching. Direct frame-by-framematchingis not a realistic
schemesincehumans may slightly alter the speedand style of
walking with time. Insteadof restrictingthe framesof possible
matches,it would beprudentto allow a searchregion ateachtime
instantduring evaluation. Dynamic Time Warping (DTW) pro-
videsfor sucha mathematicalframework [8] in that it allows for
non-lineartime normalization.We form two matricesof similar-
ity scoresby matchingthe left andright projectionvectorsin the
gallery (reference/training)with thosein the probe(testing)set,
separately.

Theoverall similarity scoreis thesumof thesimilarity scores
obtainedthe two setsof projectionvectors. If the estimationer-
rorsof thedifferentclassifiersareassumedto beuncorrelatedand
unbiased, thenvariancereducesto

�������� �	 
���
Like handdominance(right/left handedness),foot dominance

(right/left leggedness)alsoexists. While matchingtherefore,we
may assumethat improperlyaligned(i.e. right/left leg forward)
referenceandtestsequencesaffects the performance.This is an
issuebecauseit is notpossibleto distinguishbetweentheleft/right
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Fig. 2. Effect of eigendecomposition andreconstructionon the
width vectors. (a) Overlappedraw width vectors(b) Smoothed
width vectors.

limbs from 2-D binarizedsilhouettes.Supposetherearefive(half-
) cycles in both the gallery andprobesequencesfor a particular
subject. To accountfor foot-dominance, we matchthe first four
half-cyclesof thetwo sequencesandgeneratea matrix of similar-
ity scores. Then, we match the gallery sequence with a phase-
shifted probesequence to generateanothermatrix of similarity
scores.Of thetwo phase-shifted testsequences,only onecanpro-
vide a matchthat is in-phaseunlessthe subjectdoesnot exhibit
foot dominance. Without lossof generality, we may assumethat
foot dominanceexists in all subjects.Thenoneof thetwo testse-
quencesis abettermatchunlesscorruptedby noise.Therefore,the
two similarity scoresarecombinedusingtheMIN rule.

2.2. Leg dynamics

Previously, boththehands andlegswereconsideredwhile select-
ing thefeatures.If themovement of thehandsis restricted(if the
subjectis carryingan object in his/herhands)or if the sequence
is excessively noisy in thetorsoregion dueto a systematicfailure
in backgroundsubtraction,thenleg dynamicscarriesinformation
about the subject’s gait. We constructa ’width vector’ (width of
the outercontourof the binarizedsilhouette)of size ����� from
eachof theimagesof size ����� in thesequence, asillustratedin
Figure1(c). Resistanceto noiseis provided in two stages.While
a partof thenoiseis removedduringthecomputationof thewidth
vectorusingthespatialcorrelationof pixels,eigendecomposition
andwidth vectorreconstructionutilizesthetemporalnatureof the
data. The sequence of width vectors(matrix of width vectors)� ���������! "� � �$#%� && �!'�( where �)� representsthe width
vectorof size �*�+� , at time , �- , is standardizedandthescatter
matrix computed.Eigendecomposition yields the eigenvectors,
the largest . of which areretained.Theprojectionsof thewidth
vectorson the .�/ largesteigenvectorsyield coefficientsthatare
in turn, usedto reconstruct thegait sequenceby summingtheap-
propriatelyweighted.�/ largesteigenvectors.Figure2 illustrates
theeffect of ’eigen-smoothing’ on thegait sequence.

A cursoryexaminationof the width vectorssuggeststhat the
leg regionmayexhibit amoreconsistentpatterncomparedto other
partsof the body suchasthe arms. At the sametime, the gross
structureof the body, as containedin the say, the height is also
useful in discriminatingbetweensubjects. While leg dynamics
concentrateon the variationof the width vector in the horizontal
directionin theleg region alone,theheightof thesubjectvariesin
anorthogonal direction.Thewidth vectoris truncatedsothatonly
the informationaboutthe leg is retained.This sequence of trun-



Fig. 3. Identificationratesfor USFDatabase:Effect of fusion of
left andright projectionvectors.Gallery in all theexperimentsis
sequencesfrom surface:grass,shoetype: A, cameraview: right.

catedwidth vectorsis thefirst featureset,sayset 0 . We estimate
the height of the subjectfrom the imagesequenceusing robust
statistics.The estimatedheightof the individuals forms the sec-
ond featureset,sayset 1 . Euclideandistanceis usedto compare
the featureset 1 of estimatedheightof the subjectsin the probe
andgallerysets.

To comparethe truncatedwidth vectorsthat containthe in-
formationabout leg dynamics,we usetheHiddenMarkov model
(HMM) [8], which is a generalizationof the DTW framework.
Thereexists a Markovian dependence betweenframessincethe
wayhumansgo throughthemotionof walkinghaslimited degrees
of freedom.K-meansclusteringis usedto identify ’key frames’or
’stances’during a half-cycle. We found thata choiceof  2�43 is
justified by the rate-distortioncurve. We projectthe sequenceof
imageson thestancesetcreatinga 3 /65 vector(Frame-to-Stance
Distanceor FSD) representationfor eachframeandusethesesam-
plesto trainanHMM modelusingtheBaum-Welchalgorithm[9].
The viterbi algorithmis usedin the evaluationphaseto compute
theforwardprobabiliti es.Theabsolutevaluesof thelog probabil-
ity valuesarerecordedasthesimilarity scores.

If the decisionsmadeare statistically independent, we may
write thefinal errorprobability 7 e �98;:c=1 7 c

e. In practice,how-
ever it is difficult to validatethis assumption.Instead,we usethe
low correlationof decisionsacrossfeaturesetsascorroborationto
the hypothesisthat the errorsin the two featuresets,the leg dy-
namicsandthe height,areuncorrelated.We usethe product rule
to combinethescoresto computetheoverall similarity scores.

2.3. Frontal gait

Hitherto, we have studiedgait in its canonical view so that the
apparentmotion of the walking subjectis maximal. This does
not precludethepossibilityof usingotherviews rangingfrom the
frontal view to any arbitraryangleof viewing. Evenin thefrontal
view wheretheapparent leg/armswing is the least,theremay be
several cuesthat can be usedtoward humanrecognition. More
specifically, the headposture,hip sway, oscillatingmotion of the
upperbody amongother featuresmay pave the way for recogni-
tion. As before,to focusour attentionon gait,we extracttheouter
contourof thesubjectfrom thebinarizedgaitsequencein theform
of thewidth vector, suitablynormalizedfor anapparentchangein
heightasthesubjectapproachesthestationarycamera.

For matchingthesesequences,we usetheDTW technique for
similar reasonsasoutlinedin section2.1. Whenboth the frontal

Table 1. Cumulative matchscoresat rank1 andrank5 for CMU
dataset:Combiningleg dynamicsandheightusingSumrule

Feature CMSat rank1 CMS at rank5
Leg dynamics 91 100

Fusion:leg dynamics 96 100
andheight

Table 2. Cumulative matchscoresat rank1 andrank5 for CMU
dataset:effect of frontal andsidegait fusion

Feature CMS at rank1 CMSat rank5
FrontalGait 91 95

Sidegait 93 95
Frontalandside 96 97

andfronto-parallel(side)gait sequencesareavailable, it is natu-
ral to combinethesetwo orthogonal viewsbeforemakingthefinal
decisionabout the identity of the subject. One way to combine
multiple views is throughthe useof 3-D models. Currently, 3-D
modelshavebeenbuilt usingsequencescapturedinsidethelabun-
dercontrolledconditions.[10] takesthevisualhull approachwhile
Bobick et al. extract parametersinsensitive to the angleof view-
ing [11]. We adoptthedecisionfusionapproach andcombinethe
matchingscoresobtainedby matchingthefrontalandsidegait se-
quencesseparatelyusingtheSumrule.

3. EXPERIMENTS

We reportour experimentsusingthefollowing datasets.

< CMU Dataset(http://hid.ri.cmu/edu)
consistsof 25 subjectswalking on a treadmill. Sevencam-
erasaremountedat differentanglesandwe usetwo of the
views for our experiments,viz. the frontal and the side
views. Thefirst half of thegaitsequenceis usedfor training
while thesecondhalf is usedfor testing.

< MIT dataset(http://www.ai.mit.edu/people/llee/HID)
consistsof sideview of outdoorgait sequencesof 25 sub-
jectscollectedon four differentdays.Four experimentsare
designed. Datafrom threedaysprovidesthe training data
anddatafrom thefourth dayis usedasthetestsequences.

< UMD dataset(http://degas.umiacs.umd.edu/hid)
containsoutdoorgait sequencescapturedby two cameras
(frontal andsideviews). 44 subjectsare recordedin two
sessions.We train with the video datacollectedfrom the
first sessionandtestwith thatof thesecondsession.

Table 3. Cumulative matchscoresat rank1 andrank5 for UMD
dataset:effect of frontal andsidegait fusion

Feature CMS at rank1 CMSat rank5
FrontalGait 66 86

Sidegait 58 74
Frontalandside 85 95



Table 4. Cumulative matchscoresat rank1 andrank5 for UMD
dataset:Foot dominanceandeffect of fusing evidence from two
gait sequences (each4 half cycleslong), with onesequencebeing
phase-shifted.

Feature CMSat rank1 CMS at rank5
First sequence 68 84

Phaseshiftedsequence 70 88
Fusion 77 89

Table 5. USFDataset:7 probesetswith thecommon gallerybeing
G,A,Rconsisting71 subjects.Thenumbers in thebracketsarethe
numberof subjectsin eachprobeset.

Experiment Probe Difference
A G,A,L (71) View
B G,B,R(41) Shoe
C G,B,L (41) Shoe,View
D C,A,R(70) Surface
E C,B,R(44) Surface,Shoe
F C,A,L (70) Surface,View
G C,B,L (44) Surface,Shoe,View

< USFdataset(http://marathon.csee.usf.edu/GaitBaseline/)
consistsof outdoorgait sequencesof 71 subjectswalking
alonganelliptical pathontwo differentsurfaces(Grassand
Concrete)wearingtwo differenttypesof footwear(A and
B). Two cameras,R andL capturethatdata.Sevenexperi-
mentsaresetup5.

Table1 shows that while the leg dynamics,by itself hasrich
information fusion can only improve the performance. Results
obtainedusing the leg dynamicsin the casesof UMD andMIT
datasetsareshown in Tables6 and7 respectively. Figure4 shows
that foot dominanceis indeedpresentin certainindividualsin the
databaseand that fusing classificationresultsfrom out of phase
gait-sequencesservesto increaseidentificationrates.Figure3 sug-
geststhatasymmetryabouta verticalaxisin thesideview maybe
addressedby consideringthetwo halvesof thebodyoneitherside
of theverticalaxis. Theresultsof matchingleft andtheright pro-
jectionvectorsseparatelywerecombinedusingtheSumrule. Ta-
bles2 and3 show thattheperformanceof frontal gait recognition
canbeenhancedby usingthesideview aswell.

We observe, in Figure3 thattheright projectionvectorwhich
capturestheforwardswingoutperformstheleft projectionvector.
Thissuggeststhat,in thisdatabase,theforwardswingof thehands
andlegstendshasalesserdegreeof variability with time(between
the gallery andprobesequences). MIT dataset,unlike the other
datasetshasa low framerate.Secondly, errorsin backgroundsub-
tractionnecessitateframe-dropping.Thiscouldbeareasonfor the
poorperformance.

4. CONCLUSION

Different featuresthat affect gait suchas the swing of the hands
and legs, the sway in the body asobserved in frontal gait, static
featureslike height weresystematicallyanalyzed. Startingwith
dynamictime warping which is a variant of templatematching,
a moregeneralizedscheme,the HMM waschosenfor matching.

Table 6. Cumulative matchscoresat rank 1 andrank 3 for MIT
dataset:Combiningleg dynamicsandheightby addingthe simi-
larity scores.

EvaluationScheme CMSat rank1 CMS at rank3
Day 1 vs. Days2,3,4 29 50
Day 2 vs. Days1,3,4 50 100
Day 3 vs. Days1,2,4 20 54
Day 4 vs. Days1,2,3 30 52

Table 7. Cumulative matchscoresat rank1 andrank5 for UMD
dataset:Combiningleg dynamicsandheightusingSumrule.

Feature CMSat rank1 CMS at rank5
Leg dynamics 31 65

Fusion:leg dynamics 49 72
andheight

The matricesof similarity scoresbetweenthe gait sequencesin
thegalleryandprobesetswerecomputed.Sum,ProductandMIN
ruleswereusedto combinethedecisionsmadeusingtheseparate
features. As expected,the overall recognitionperformance im-
proveddueto fusion. Experimentswereconductedon four differ-
entdatasets,eachdatasetpresenteddifferenttypesof challenges.
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