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Abstract

An almost ubiquitous user interaction in most HCI appli-
cations is the task of selecting one of out of a given list
of options. For example, in common desktop environments,
the user moves the mouse pointer to the desired option and
clicks it. The analog of this action in projector-camera HCI
environments involves the user raising her finger to touch
one of the different virtual buttons projected on a display
surface. In this paper, we discuss some of the challenges in-
volved in tracking and recognizing this task in an projected
immersive environment and present a hierarchical vision
based approach to detect intuitive gesture-based “mouse
clicks” in a front-projected virtual interface.

Given the difficulty of tracking user gestures directly in
a projected environment, our approach first tracks shadows
cast on the display by the user and exploits the multi-view
geometry of the camera-projector pair to constrain a sub-
sequent search for the users hand position in the scene. The
method only requires a simple setup step in which the pro-
jector’s epipole in the camera’s frame is estimated. We
demonstrate how this approach is capable of detecting a
contact event as a user interacts with a virtual pushbutton
display. Results demonstrate that camera-based monitoring
of user gesture is feasible even under difficult conditions in
which the user is illluminated by changing and saturated
colors.

1 Introduction

In the recent past there has been a significant research fo-
cused on camera projector systems. This is partly due to
the observation that camera-based calibration of projected
displays allows very-large, cost-effective immersive dis-
plays with very little setup or maintenance burden placed
on the user [1, 2, 3]. This research has spawned many
smart projector applications such as scalable alignment of
large multi-projector displays [2, 4], smarter interfaces for
controlling computer based presentations [5, 6], and dy-
namic shadow elimination [7, 8]. Perhaps most importantly,
camera-projector research has begun to explore the develop-

ment of very flexible visually immersive environments e.g.
“Office of the Future”[9] that offer completely new applica-
tions.

Given the scientific and commercial interest in these
emerging technologies, a natural next step is to exploit the
the camera-projector system to support human-computer in-
teraction (HCI) [10, 11]. The system must be able to detect
human gesture, interpret the context of the action, and re-
spond appropriately. Understanding human actions is an
active area of research in computer vision. However, when
this task is transfered from the domain of an ambient (or
controlled) environment to a situation in which the user may
be illuminated by the projected imagery, the problem takes
on a new dimension. For instance, traditional approaches to
tracking may fail when the user is illuminated by varying
(and saturated) colors. Surprisingly, this situation is likely
to occur in many of the new display environments that are
emerging from the multi-projector display community.

Although the work presented here assumes the presence
of a front-projected display (and cast shadow of the ges-
ture), the assumption is not overly restrictive. In addition,
some of the principles used to track and recognize ges-
ture in a front-projection environment can be used to allevi-
ate some of the same problems with tracking user gestures
against a changing back-projected display. Front-projected
displays are recently used in favor of back-projected and
controlled display walls due to lower cost, space savings,
and ease of maintenance. Immersive environments that
emphasize reconfigurability, and rapid deployment [7], al-
most certainly cannot assume the presence of backprojec-
tion screens. Finally, new applications that emphasize dis-
play on everyday surfaces, anywhere [10, 12], by definition
cannot support controlled backprojection display. Given
these new applications, it is important that camera-based
HCI methods are developed that do not degrade when users
are illuminated by a projector.

One approach to camera-based HCI in a projected dis-
play is to opportunistically capture and process imagery
while the projectors are synchronously turned off. This is
the approach taken by the the blue-c project [13] that ac-
quires a volumetric model of the user within a projected
display. Given the 3D reconstruction of the subject in an
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immersive environment, event detection can be achieved
by directly analyzing the three-dimensional configuration
of the user and determining if it corresponds to a particular
event. This and similar approaches address the problem of
projected illumination by shuttering the projected light to
remove its effects from the user [13], detecting and elim-
inating light projected on the user altogether [8], or sim-
ply by disallowing HCI to occur in the frustum of a pro-
jector. Although these approaches have met various levels
of success, they require specialized hardware (gen-lock and
expensive high shutter rate projectors), or make assump-
tions about the environment (i.e. that the projected image
is known or fixed).

An almost ubiquitous user input in most HCI applica-
tions is the task of selecting one of out of a given list of
options. For example, in common desktop environments,
the user moves the mouse pointer to the desired option and
clicks it. The analog of this action in the case of an im-
mersive environment involves the user raising her finger to
touch one of several virtual buttons projected on the display
surface. In this paper, we discuss some of the challenges in-
volved in performing this task in an immersive projected en-
vironment and present a hierarchical vision based approach
to detect this “mouse click” or contact event. This work is
motivated by the following observation: shadows cast by
users interacting within an immersive environment are of-
ten simpler to detect than the occluder. Detected shadows
can constrain the location of the occluder and are often suf-
ficient to recognize simple gestures. Rather than viewing
shadows as an obstacle, we can exploit information given
by the shadow to expedite the detection of a contact event.
Segen and Kumar [14] have used joint shadow and hand in-
formation for gesture recognition. However their approach
relies on using hue values of skin for detection of the hand
region. In projected interfaces or immersive environments
detection of skin region (as we shall see in Section 2) can
be quite difficult.

Initially, the epipole of the projector in the camera’s
frame is estimated using a novel approach that requires
very little user input. The shadow of the hand is detected
and tracked using a mean-shift tracker. Using appropri-
ate histogram metrics, the onset of the contact event is de-
tected. The tracked shadow and the projector epipole define
a constrained region that could contain the occluding object
(hand). Background subtraction is used to extract the hand
from the restricted epipolar swath region. The Euclidean
distance between the hand centroid and the tracked hand-
shadow is computed to detect the contact event. Because
we employ geometric constraints, the computational burden
normally associated with tracking and monitoring can be
reduced and real-time rates can be achieved. Experimental
results are presented for the case where a user interacts with
three virtual buttons on the screen. Initial results demon-

strate that contact approach, and the contact event itself can
be measured robustly using our method.

The paper is organized as follows. In Section 2 we dis-
cuss challenges in gesture recognition in immersive envi-
ronments. In Section 3 the details of the algorithm are cov-
ered. Section 4 presents the experimental results and Sec-
tion 5 concludes the paper with speculation about how con-
strained tracking of user gesture via detected shadows my
be applied to a wider range of gestures common to user in-
terfaces.

2 Challenges for HCI in immersive
environments

Most current automated approaches for recognizing hand
gestures [15] rely on detection and tracking of skin regions.
In order to detect skin regions the raw RGB color values
are usually transformed to a color-space where hue is mea-
sured against known target values. A comparison of dif-
ferent color-space transformations for skin detection is dis-
cussed in [16]. As an example, consider the transformation
to the HSV space. Independent of ethnicity, skin regions
are restricted to either very low or very high values of hue
under ambient lighting and a simple algorithm for skin de-
tection can be obtained by setting appropriate thresholds on
hue values in the scene. These settings are fairly robust for
a particular (non-changing) lighting scenario.

An immersive environment or even projected interface
is fundamentally a constantly changing, interactive display.
The changing radiometric characteristics may be approxi-
mated and taken into account [7], by underlying image pro-
cessing algorithms, but these approximations are often in-
sufficient to support straightforward skin detection or are far
too complex to estimate and then use at real-time rates. As
a user is illuminated with projected information the hue of
the skin is transformed based on the color being projected.

One of the ways to deal with this problem is to perform
automatic white balancing [17] under a given colored light-
ing. Assuming that a certain region viewed by the camera
is white, we can compensate its color values to remove the
bias introduced by non-white illumination. However, white
balancing may not correctly restore the hue of the skin re-
gions to their ambient values. Furthermore if more than one
color is projected white balancing may become complicated
and expensive. This is an issue when real time performance
is desired. Another approach is to model skin appearance
under different illuminations by building histograms of skin
pixels under different illuminations [18]. Figure 1 shows the
RGB and hue images of the hand for ambient and color il-
luminations. As can be seen, under color illumination some
backgrounds can attain hue characteristics of skin. Detec-
tion and tracking of skin regions under varying illumina-
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tion is thus a hard problem. To circumvent this difficulty,
it would then be necessary to simply shutter off the pro-
jected information [13, 8], or require that the user does not
enter the frustum of any projector. Fast shuttering of pro-
jected energy requires additional expensive hardware and
may not be feasible for large scale multi-projector environ-
ments. Turning off projected information has been explored
for situations in which users may be “blinded” by projected
energy, but requires an accurate model of what is projected
at each frame. This information is simply unavailable to an
interactive display.

3 Proposed Methodology

The work presented here is motivated by the observation
that shadow regions are relatively easy to detect and track
even under widely varying illumination. Detection and
tracking of the hand regions is a rather formidable prob-
lem as we saw in Section 2. Ultimately, interface ges-
tures are performed by the user and his/her hands and not
the shadows on the display surface. However, by tracking
the shadow we can infer the appropriate search region for
the hand in the scene. Moreover, the position of both the
shadow and the casting object can yield information to a
gesture recognition system. Here we detail how we track
both regions (when appropriate) and how the measured dis-
tance between the hand and its shadow is a robust image-
based measure of detecting the contact even.

Considering the non-rigid nature of the hand, a mean-
shift tracker is used to track the centroid of this hand-
shadow region. It is necessary to track the hand centroid
only when the hand is close to the screen containing the vir-
tual buttons. This proximity of the hand to the screen can
be detected by the occlusion of the shadow of the hand by
the hand itself. After detecting the onset of contact, the esti-
mated epipolar geometry between the camera and projector
can be used to restrict the search region for the hand. Ad-
ditional information about the approximate color-mapping
between the camera and projector as well as the contents of
the projector frame buffer at any given instant is then used
to detect the presence of the user’s hand within this small
search region. The Euclidean image distance between the
centroid of the tracked hand shadow and the centroid of the
hand region is measured and when this distance drops be-
low a threshold, the color in the neighborhood of the hand
shadow centroid is declared to be the corresponding virtual
button “pressed” by the user.

3.1 Projector Epipole Estimation

A data projector is a dual of a camera and the projection
process can be modeled using the standard pinhole camera
model. Given a shadow on the display surface and detected

in a camera image, the corresponding occluding object must
lie along an epipolar line in the image that relates the multi-
view geometry of the projector-camera pair. Our approach
is to estimate the position of this projector epipole in the
frame of the camera and the constrain the search for the
user hand via the implied epipolar lines that emanate from
the detected shadow.

One way of determining the epipole for a camera-
projector pair is to compute a pair of homographies between
them by determining matchpoints between the devices on
two different world planes. The epipoles in the two images
can then be computed solving the generalized eigen-value
problem for the two homographies [19]. This idea was used
by Raskar and Beardsley [20] as an intermediate step in the
camera-projector calibration problem. In order to obtain the
homographies it is necessary to vary the configuration of the
system with respect to the plane which can prove to be cum-
bersome. For our problem all we need to restrict the search
space for the hand is the location of the projector epipole.
A much simpler approach can be used in order to do this.
Presence of an occluder in the frustum of the projector will
cast a shadow on the screen. In an image of the object
and its shadow, the line joining a point on the object and
its shadow will pass through the projector epipole. Thus,
given two pairs of corresponding object-shadow points, the
join of their lines determines the epipole. More formally,
let (o1, s1) and (o2, s2) be the image plane coordinates (ex-
pressed in homogeneous coordinates) of two distinct world
points. Then the epipole e can be determined as

e = l1 × l2 (1)

where l1 = o1 × s1 and l2 = o2 × s2 where × represents
the cross product. In practice, it is necessary to consider
more points when estimating the epipole. A simple way to
do this is to simply move a suitable object in the field of
view of the camera. Pairs of points on the object and their
corresponding shadows can be used to generate the lines
passing through the projector epipole. Using these lines and
(1) estimates of the epipoles can be obtained. During this
bootstrapping process, the projector is instructed to project
white to alleviate the tracking problems that this paper ad-
dresses.

3.2 Mean-shift Tracking

In order to track the shadow it is necessary to compute the
location of the hand shadow in the first image. Prior shape
information about the hand shadow regions and the location
of the shadow can constrain the initial tracking system. One
way to compute the location of the hand shadow is to use
the chamfer system [21]. Alternatively, if the approximate
areas where shadows are likely to emerge on the display,
simpler search techniques can be used.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Images of the hand taken under different illuminations; RGB images for (a) Ambient lighting (b) Saturated Blue Color (c)
Saturated Magenta Color; Hue images for (d) Ambient lighting (e)Saturated Blue Color (f) Saturated Magenta Color ;

The intensity histogram of the image patch around the
detected centroid of the hand-shadow region as it emerges
from the edge of the monitoring camera defines the target
histogram. Taking into account the non-rigid nature of the
hand, we use the mean-shift tracking algorithm of Comani-
ciu et al.[22] to robustly update the estimated position of
the cast shadow. Mean-shift tracking is based on maximiz-
ing the likelihood of the model (hand shadow) intensity dis-
tribution and the candidate intensity distribution using the
Bhattacharya coefficient.

ρ(m) =
n∑

u=1

√
qupu(m) (2)

where m is the center of the hand region, n is the number
of bins in the distribution, and qu and pu are the weighted
histograms of the model and candidate respectively. The
weights for the histograms are obtained using the Epanech-
nikov kernel. The center of the hand region in the next
frame is found using

mnew =
∑nh

i=1 xiwig(||mold − xi||)∑nh

i=1 wig(||mold − xi||) (3)

where xi are the pixels in the image patch and g is the
derivative of the Epanechnikov kernel. The weights wis are
computed as

wi =
n∑

u=1

δ[b(xi) − u]
√

qu

pu(m)
(4)

where δ(.) is the Kronecker delta function and b(.) is a func-
tion that associates to a pixel the index of the histogram
bin corresponding to the intensity value associated with the
pixel. As the hand starts making contact with the virtual
buttons the shadow of the hand starts getting occluded by
the hand. This occlusion of the hand-shadow indicates the
onset of contact. In order to detect this, it is necessary to
compare the tracked shadow region in the neighborhood
of its centroid in the present frame to the target histogram.
One measure could simply be simply the number of shadow
pixels. This measure is not scale invariant however. It is
more appropriate to consider scale invariant metrics e.g. the
Bhattacharya distance which is also used for the mean-shift
tracker.

dBhattacharya(p, q) =

√√√√1 −
n∑

u=1

√
qupu(m) (5)

Another scale-invariant histogram distance metric is the chi-
squared distance defined by (6) which has been used in [23]
for scene change detection in digital video sequences.

dχ2 =
n∑

u=1

(qu − pu(m))2

(qu + pu(m))
(6)

3.3 Detection of the contact event

A simple way of detecting contact is to consider the value
of this metric as a function of time. When the metric is
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Figure 3: Estimates of epipoles obtained by considering pairs of
object-shadow points from several images of a rectangular board

sufficiently large, contact can be assumed to have occurred.
However this simple scheme has the disadvantage that the
extent to which the hand occludes the shadow varies based
on the location of the user with respect to the display. Hence
it is more appropriate to use this temporal metric informa-
tion only to signal the onset of contact. Once the onset of the
contact has been detected it is necessary to detect the true
hand position in the image plane. Knowing the projector
epipole, a simple way to limit the search region is to con-
struct a swath region starting at the corners of the window
enclosing the hand shadow centroid. Furthermore, since the
hand is assumed to be close to the shadow when the shadow
begins to be occluded it is possible to limit the depth of this
epipolar swath.

Given this implied search area on the image plane, there
are several options to determining the location of the users
hand. One way is to compute an edge-map within the swath
region and compute its centroid. On nearing contact the
centroid of this edge-map would be expected to merge with
the centroid of the hand shadow. Alternatively if the image
displayed by the projector does not change too rapidly and
the color transfer function between the camera and projec-
tor is known, a simple background differencing between the
swath region in the current image and the reference image
can be used to detect the presence of the hand.

4 Experimental Results

The approach was tested using a single- ceiling mounted
projector p while a camera, mounted approximately 20-

degrees off-axis also on the ceiling monitors the scene.
Three different colored buttons where projected and the
subject was instructed to touch each button sequentially.
Figure 2 shows a few images from the dataset. This section
discusses the implementation details of our approach and
explores the robustness of the virtual touchbutton detection
system.

In order to use this method it is necessary to compute
the epipole. As discussed in Section 3, this requires several
object-shadow point correspondences. In order to simplify
the task of establishing correspondence, a rectangular board
was moved around in the field of view of the camera. About
40 images were captured and the estimates of epipole loca-
tions were obtained using (1). Figure 3 shows the estimated
epipoles. Since the camera and projector axes are almost
parallel to each other there is considerable variance in the
estimated epipoles. The epipole used in our experiments
is the mean of this cloud of points. Clearly, the approach
is unable to provide accurate information about the epipole
position for traditional multi-view calibration tasks. How-
ever, only a rough estimate is required to constrain the sub-
sequent search of the user’s hand position.

Assuming that the person has an outstretched finger for
the touchbutton gesture, the initial shadow region in the
image is detected by thresholding the intensity values and
analyzing the shape characteristics of the cast shadow. Of
course the shadow changes shape according to a perspec-
tive projection of the hand to the display surface so these
shape constraints must be quite weak. A rectangular bi-
nary mask is translated horizontally and its correlation with
the shadow regions is computed. Since we assume an out-
stretched finger, the correlation in the finger (shadow) re-
gion will be smaller than that in the hand (shadow) region.
The first instance of a large change in the correlation value
can be used to approximately detect the hand shadow re-
gion. Given the estimated hand shadow location in the first
frame, the histogram of the intensity values around the lo-
cation is computed. This histogram is used as the target
histogram. Note that unlike [22] the target histogram is one
dimensional. Mean shift iterations as described in [22] are
used to track the centroid of the hand shadow in each frame.

In order to detect the onset of contact, the distance be-
tween the histogram of the hand-shadow region around the
tracked centroid and the target histogram for each frame
is computed. Note that at the end of each mean shift it-
eration the Bhattacharya distance (computed using (5)) be-
tween the target histogram and the histogram for the image-
patch around the centroid is available. However we wanted
to explore if a different histogram distance e.g. chi-squared
distance (computed using (6)) would be more suitable for
this task. Both the Bhattacharya distance and the chi-square
histogram distance measures were tested for detection of
onset of contact. Figure 4 shows a comparison of the dis-
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Figure 2: Few images taken from our experimental setup. The white lines connect the corners of the window enclosing the hand shadow
region to the epipole.

tance measures for a video sequence of the person touch-
ing the virtual buttons and then withdrawing. The peaks in
the plot correspond to the person making contact with the
virtual buttons while the valleys correspond to the persons
hand being far away from the virtual buttons. The solid red
curve shows the chi-squared distance while the blue dash-
dotted curve shows the Bhattacharya distance as a function
of time. As can be seen from this figure, for a fixed thresh-
old, the chi-squared distance exceeds the threshold less fre-
quently than the Bhattacharya distance. This is because the
chi-square distance, since it uses the square of the difference
in the histogram values, penalizes differences more when
they are large, whereas small differences are penalized less.
For the case shown in Figure 4 and for a threshold chosen
to be 0.2, the chi-squared distance exceeds the threshold for
30% of the frames while the Bhattacharya distance does so
for 60% of the frames. Furthermore none of the true con-
tact onsets were missed by the chi-squared distance for the
chosen threshold. Since crossing the threshold implies that
the hand centroid must be computed, using the chi-squared
distance leads to a reduction in the amount of computation
as compared to the Bhattacharya distance. When the chi-
squared distance exceeds the specified threshold, it is nec-
essary to look for the hand. Given the approximate location
of the epipole (obtained as discussed earlier) the search re-
gion is restricted appropriately. In particular we consider
a window around the tracked position of the hand shadow.
The epipolar swath region is determined by the lines join-
ing the opposite corners of the window with the epipole.
Figures 2 shows the epipolar swath region constructed for
a few images in our dataset. Furthermore, since the onset
of contact has been detected by the histogram distance, it
is not necessary to consider the entire epipolar swath. It
is sufficient to traverse a limited distance along the epipo-
lar swath direction. Figure 5(a) shows the intensity image
within the delimited swath region. Since the camera and
projector axes are almost parallel the lines connecting the
corners of the window to the epipole are almost parallel to
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Figure 4: Comparison between Bhattacharya and chi-squared dis-
tances for detection of onset of contact. Observe that for a given
threshold the chi-squared distance has fewer crossovers
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each other. Given this delimited epipolar swath region it is
necessary to compute the hand centroid in this region. One
approach to this problem is to consider the edge-map within
this region. This edge map would consist of edges from the
hand as well as the shadow regions. As the hand starts mak-
ing contact with the screen the centroid of the combined
edge region would be expected to merge with the centroid
of the hand shadow. However the drawback of this approach
is that as the person makes contact with the middle and
top buttons, his/her hand passes through at least one other
button. This results in detection of spurious edges which
causes the centroid computation to be unstable and result-
ing in false positives. Hence a more robust approach must
be sought. Assuming that the display does not change very
rapidly and that the color calibration between the camera
and projector is known, one simple solution to this problem
is to consider a simple pixel-wise background subtraction
within the delimited swath region. As the number of pixels
in this region is significantly smaller than that of the entire
region (less than 4% of the total number of pixels in most
cases)the added computational burden is not as significant
as compared to an approach that uses background subtrac-
tion for the entire image. In particular the hand region is
computed as

Ihand(i, j) =




1 if (i, j) ∈ ES and
|Ihand(i, j) − Iref (i, j)| > T1 and
Ihand(i, j) > T2

0 otherwise

where ES denotes the epipolar swath, T1 denotes a thresh-
old to determine if the pixel is a foreground pixel,and T2

is a threshold to determine if the pixel is a shadow pixel.
The estimated hand region corresponding to the intensity
image in Figure 5(a) is shown computed from the above
equation is shown in Figure 5(b). The Euclidean distance
between the tracked shadow centroid and the hand region
is then computed. When the distance falls below a certain
threshold, contact is declared. The color of region in the
neighborhood of the contact region can be inspected to take
the appropriate course of action.

Figure 6 shows the Receiver Operating Characteristics
(ROC) plots for the contact event (hypothesis H1) versus no
contact (hypothesis H0). The ROC plots the probability of
detection of the contact event (PD) against the probability
of a false alarm (PF ). The video was analyzed manually to
detect which frames had the contact event happen in them.
The threshold for the histogram distance was set at a value
so that no contact event was missed. The plot was generated
by varying the threshold on the Euclidean distance between
the hand and shadow regions and counting the number of
times the contact event gets detected when no contact has
occurred (for PF ) and when contact has occurred (for PD),
for a given threshold. The total number of frames was 243
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Figure 6: Receiver Operating Characteristics for the contact event
(hypothesis H1) versus no contact (hypothesis H0).

out of which 31 frames had the contact event happen.
The ROC can be used to choose a threshold to get a good

tradeoff between PD and PF .

5 Conclusions and Future Work

In this paper we presented a method for detecting contact
events which can work under the arbitrary lighting condi-
tions typically encountered in an interactive, projected dis-
play. Instead of using skin tone detection (which can be
unreliable under varying lighting conditions), the approach
focuses on the shadow cast by the hand. The location of
the hand shadow is detected and tracked using a mean shift
tracker. Since the hand occludes the shadow before contact
happens, the deformation of the hand-shadow region is then
used to detect the onset of contact. A novel method which
required very little user input was introduced to estimate
the projector epipole. After detecting the onset of contact,
the epipole was used to define a restricted search region for
the hand. Background subtraction was then used to extract
the hand from the restricted epipolar swath region. The Eu-
clidean distance between the hand centroid and the tracked
hand-shadow was computed to detect the contact event. The
experimental results showed that the contact approach and
the contact event itself can be measured robustly using our
method.

Our approach used a single-camera projector pair. Fu-
ture work would focus on achieving greater view invari-
ance. For instance, in the experimental setup we have con-
sidered, there are certain positions in the camera’s field of
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Figure 5: Delimited Epipolar swath region constructed after the onset of contact has been detected. (a)Intensity Image (b) Binary Image
showing the hand region after background subtraction

view in which the person completely occluded the hand-
shadow.One possible approach to remedy this situation
would be to use multiple cameras. It would also be inter-
esting to use 3D information about the hand by using the
shadow and a full calibration between the camera-projector
pair similar to Segen and Kumar [14].
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