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Abstract—Effective and fast localization of anatomical struc-
tures is a crucial first step towards automated analysis of medical
volumes. In this paper, we propose an iterative approach for
structure localization in medical volumes based on the adaptive
bandwidth mean-shift algorithm for object detection (ABMSOD).
We extend and tune the ABMSOD algorithm, originally used
to detect 2D objects in non-medical images, to localize 3D
anatomical structures in medical volumes. For fast localization,
we design and develop optimized parallel implementations of
the proposed algorithm on multi-cores using OpenMP, and on
GPUs using CUDA. We evaluate the quality, performance and
scalability of the proposed algorithm on Computed Tomography
(CT) volumes for various structures.

Index Terms—localization; medical image processing; GPGPU
computing; CUDA

I. INTRODUCTION

Automation of clinical procedures involving analysis of

imaging data, such as tissue volume quantification, screening,

diagnosis as well as surgical procedures, not only helps to im-

prove patient throughput but also enhances repeatability, safety

and quality of patient care. Typically, analysis of medical

imaging data includes operations such as image segmentation,

registration, feature extraction, recognition and classification.

As medical images suffer from inherent noise and low contrast

and spatial resolution [1], accurate segmentation, registration

or classification is difficult and computationally intensive. For

example, several 3D anatomy segmentation and recognition

algorithms take several minutes for execution even with GPU

acceleration [2], [3], [4]. In addition, these algorithms are

highly tuned and specific to an anatomical structure, like the

lung or liver. To address the above issues, a generic pre-

processing step that localizes any structure can be very useful

in improving both speed and accuracy of the above procedures.

For example, high precision segmentation of tumors can be

accomplished faster by executing complex domain-specific

segmentation algorithms on a localized region around the

tumour, rather than the entire volume.

Localization can be used to improve the speed and quality of

diagnosis for difficult cases. A doctor can scan his past patient

data to retrieve a subset of imaging records that comprise

of the structure of interest. Domain-specific algorithms can

then be run on localized regions in the relevant records to

identify similar cases quickly, which the doctor can consult

before making critical diagnoses. Localization can also be

applied to track anatomical structures in image-guided surgical

procedures. Thus localization can play a crucial first step in

automated analysis of medical imaging data.

In this paper, we propose an iterative approach for struc-

ture localization in medical volumes that is based on the

adaptive bandwidth mean-shift algorithm for object detection

(ABMSOD) [5]. We extend and tune the ABMSOD algorithm,

originally used to detect 2D objects in non-medical images,

to localize 3D anatomical structures in medical volumes. The

ABMSOD algorithm is an iterative meanshift based object

detection algorithm which estimates the position as well as

the size and orientation of the target object in the given

image. ABMSOD estimates the object position using conven-

tional meanshift and the object scale and orientation using

an adapative bandwidth for the meanshift kernel. To enable

fast localization of structures, we develop optimized parallel

implementations of our localization technique on multi-cores

using OpenMP and graphics processors using CUDA.

We evaluate the quality, performance and scalability of our

algorithm on Computed Tomography (CT) volumes for the

following structures: brain stem, eye and the parotid gland.

Our evaluations show that in 40% of the runs, we are able

to encapsulate more than 90% of the structure, while in 65%

of the runs we are able to capture the structure partially with

atleast 50% of coverage. As our proposed technique is generic

enough to accomodate any target description, our future work

is to experiment with different target descriptors trading off

between localization accuracy, speed and flexibility. The GPU-

acceleration of the proposed algorithm yields a 97x speedup

over the sequential implementation and a 28x speedup over

the OpenMP parallel implementation, and scales well with

increasing dimensions of the search space.

II. RELATED WORK

Localization and segmentation of anatomies has been a

primary focus area of research over the recent years. Lo-

calization techniques are typically based on either boundary

delineation methods using active shapes, appearances [6], [7]

and deformable models [8], [9] or through machine learning

techniques [10], [11], [12], [13], [14], [15]. Active shapes and

appearance models have been used to perform 2D segmen-

tation in medical images that have a fairly consistent shape

and gray level appearance [16], [17], [18]. However, these

techniques require extensive apriori knowledge of the struc-

tures and intensive training to build robust models, especially



for 3D segmentation where the gray levels and the boundary

appearances may vary largely [19]. Also, these works focus

on specific imaging modalities. Other model-based localization

techniques, including deformable models [8], [9] also require

extensive training and are structure specific.

Recently, marginal space learning has proved a successful

technique in automatic detection of 3D structures in med-

ical images [10], [11]. Here, localization is modeled as a

classification problem and structures are identified by per-

forming parameter estimations in a series of marginal spaces

with increasing dimensionality rather than scanning the clas-

sifer exhaustively over the entire search space. Constrained

marginal search exploits correlation amongst the parameters

to reduce the search space and quicken convergence. Cri-

minisi et. al. [12] propose a random decision forest based

classifier to detect multiple organs in CT images. These works

which are based on classification, involve a computationally

intensive training phase that requires a large training data set.

Pauly, Criminisi and others, proposed an approach to detect

the position of multiple objects in MR images using a single

fern-based regressor [14], which facilitates faster training. This

work introduces features based on MR Dixon channels and

is tightly coupled to the MR modality. They use cuboids to

localize anatomies. Zhou et. al. [13], [15] describe an ensemble

learning based approach for detecting solid objects in CT

images. This approach requires lesser number of data sets

for the training phase. It detects 3D objects by applying 2D

detection techniques across slices in all three dimensions of

the image volume, which makes the algorithm computationally

intensive (approximately 15 seconds per CT scan), and uses

cuboids to localize structures. Apart for the works described

above, several researchers have proposed algorithms to localize

and segment specific organs by applying domain specific

knowledge [10], [20], [21], [22].

All of the above works are either domain specific, compu-

tationally intensive or require extensive training. Some works

use cuboids for localization which does not tightly capture

the orientation and shape of irregular structures. In this paper,

we extend the work of Chen et. al. [5] to develop a generic

framework that can be used to detect any 3D structure in a

medical volume without the need for intensive training or apri-

ori domain specific knowledge. Our algorithm is parallelized

on multi-core CPUs and GPUs to enable fast localization.

III. BACKGROUND

A. Adaptive Bandwidth Mean-shift Algorithm

The Adaptive Bandwidth Meanshift Object Detection

(ABMSOD) algorithm is an iterative meanshift based algo-

rithm for 2D object detection in computer vision. The mean

shift algorithm is an unsupervised method commonly used

in computer vision problems such as filtering, tracking and

segmentation. In the mean shift procedure the feature points

move toward some significant modes and cluster themselves

automatically making it ideal for multi-object detection and

localization. The ABMSOD algorithm uses kernel weighted

feature histograms (features could be color, texture or haar-

like features) to describe the target object and candidate object

models. Given a test image and the target kernel-weighted

feature histogram, ABMSOD tries to identify the optimum

position, scale and orientation of the target in the test image.

It follows a two step approach - in the first step, it searches

through the whole image to identify rough positions of possi-

ble candidate objects. This is done by randomly scattering

ellipstical windows all over the image and computing the

similarity between the feature histogram of these windows

with that of the target using the Bhattacharyya co-efficient,

which is defined as

ρ(x) =

M
∑

u=1

√

pu(x)qu (1)

where, p and q are the candidate and target histograms

respectively, M is the total number of bins in the histogram

and x is the position of the candidate window. Only window

regions with similarity above a threshold is considered as

possible candidate objects. In the second step, for each pos-

sible candidate object identified, the optimum position, scale

and orientation maximizing the similarity between the target

histogram and the candidate histogram, is computed.

Conventional meanshift is used for optimum position esti-

mation. The meanshift procedure assigns weights to the pixels

in each elliptical candidate window. These weights depend on

the feature value as well as the distance of the pixel from

the ellipse centre. The distances are usually weighted by a

kernel function like the epanichekov or gaussian kernel [23].

Meanshift finds the best next position of the window in every

iteration using the pixel weights. To estimate the optimum axes

lengths and orientation, the optimum bandwidth matrix, which

encodes the scale and orientation parameters of the candidate

ellipse, is computed at each iteration using the equations in

[23]. Thus ABMSOD iteratively finds the best position, scale

and orientation of the target object in a given image.

B. GPGPU Computing and CUDA

The GPU is a data-parallel computing device consisting of

a set of multiprocessing units (SM), each of which is a set of

SIMD (single instruction multiple data) processing cores. For

example, the Quadro FX 5600 GPU has 16 multiprocessing

units, each having 8 SIMD cores, resulting in a total of 128

cores. Each SM has a fixed number of registers and a fast

on-chip memory that is shared among its SIMD cores. The

different SMs share a slower off-chip device memory. Constant

memory and texture memory are read-only regions of the

device memory and accesses to these regions are cached. Local

and global memory refers to read-write regions of the device

memory and its accesses are not cached. The Compute Unified

Device Architecture (CUDA) [24] is a C-based programming

model from NVIDIA that exposes the parallel capabilities of

the NVIDIA GPU for general purpose computing.

In the CUDA context, the GPU is called device, whereas

the CPU is called host. Kernel refers to an application that is

executed on the GPU. A CUDA kernel is launched on the



Fig. 1. CUDA Programming and Memory Model. (Courtesy: NVIDIA)

GPU as a grid of thread blocks. A thread block contains

a fixed number of threads and can span in one, two or

three dimensions. A grid can span in one or two dimensions.

Figure 1 shows an example of a kernel launched as a two

dimensional 3×2 grid of two dimensional 5×3 thread blocks.

Threads are uniquely identified based on their block index

and thread index within the block. A thread block is executed

on one of the multiprocessors and multiple thread blocks can

be run on the same multiprocessor. Consecutive threads of

increasing thread indices in a thread block are grouped into

what are known as warps which is the smallest unit in which

the threads are scheduled and executed on a multiprocessor.

IV. 3D STRUCTURE LOCALIZATION ALGORITHM

To detect 3D structures in medical volumes, we extend the

ABMSOD algorithm (described in Section III-A), which was

originally proposed to detect 2D objects in the computer vision

domain. We extend the algorithm to perform 3D localizations

and adapt it for medical image processing. As a first step to

the extension, we derive the expression for the 3D bandwidth

matrix(H), which encodes the scale and orientation parameters

of the candidate ellipsoid. There are 9 independent parameters

of the candidate ellipsoid - the 3D coordinates of the center

of the ellipsoid, the lengths of the 3 axes - a,b,c and the

orientation of the ellipsoid about the X, Y and Z axes - α,

β, and γ. The H matrix, therefore, is given by

H = AAT ;A = R(α, β, γ)×D(a, b, c) (2)

Here, R denotes the rotation matrix and D denotes the

diagonal matrix. R is defined as

R = Rx(α)×Ry(β)×Rz(γ) (3)

where Rx, Ry and Rz represent the rotation matrices about

the X, Y and Z axes respectively. D is given by

D =

[

a 0 0
0 b 0
0 0 c

]

(4)

At every iteration, we scale the parameters of the ellipsoid

by a factor σ following the intuition of Ning et. al. [25] to

search in a region slightly bigger than that obtained from the

previous iteration so as to capture more of the local context

around the search window. With this scaling, the equation of

the ellipsoid is given by

S = {s|(x− s)TH−1(x− s)} ≤ σ3 (5)

Here, S is the set of all points that lies within the ellipsoid,

centered at x, with a bandwidth matrix of H . The lengths of

the three axes of the ellipsoid are scaled by a factor σ.

The feature values of the points in S are used for the

histogram calculation. The candidate histogram for an ellipsoid

described by the bandwidth matrix H and centred at the point

x is given by

pu(x) = CH

∑

s∈S0

|H|−1/2K((x− s)TH−1(x− s))δ[b(s)− u] (6)

where u = 1, 2...M denotes the histogram bins, b(s) denotes

the bin number to which the feature of pixel s lies, CH is the

normalization constant, and δ is the Kronecker delta function.

Any feature that can be represented by a histogram such

as the pixel intensity, histogram of gradients or local binary

patterns, can be used. The target histogram q is constructed

using the ground truth data of the structure to be localized. It

represented in a similar way as the candidate histogram. We

also measure the center of the structure to be localized and the

scale and orientation parameters of the closest fitting ellipsoid

that encloses the structure in the training volumes and use this

to initialize the search space. In our experiments, we used one

volume for each structure for training.

The search space is defined by a bounded region around

the expected center of the structure (as computed through the

training procedure described above). The dimensions of the

search space should be large enough to account for the maxi-

mum variance in the structure positions. Our algorithm works

by scattering random points within the search space. Each of

these points marks the center of a candidate ellipsoid. The

axes lengths of the candidate ellipsoids are intialized using the

values obtained through training along with a certain variance.

All orientations are initialized to zero. This constitutes the

intial H matrix. To fix the value of σ, the algorithm is run

on the train volume using different values of σ and the value

which gives the tightest enclosing ellipsoid is chosen.

As mentioned in Section III-A, the ABMSOD algorithm

uses meanshift for position estimation.At each iteration of

meanshift, the next position for the search window depends

on the coordinates and weights assigned to the pixels in the

ellipse. It is given by:

∆x =

∑

s∈S
GH(x− s)w(s)s

∑

s∈S
GH(x− s)w(s)

(7)

where K is the kernel function used to weigh the pixel

contributions to the histogram and w(s) is the weight

assigned to each pixel s in the search window

We use the Gaussian function as our kernel function,

i.e K(x) = c exp −x
2 The function w(s) is defined as

w(s) =
∑M

1

√

qu/pu(x)δ[b(s)− u] and GH(x) = −K ′

H(x)



ABMSOD derives the expression for the optimum 2D H

matrix for estimating the scale and orientation at each iteration.

We derive the optimum H matrix for any N dimensional super-

ellipsoid. It is shown by Chen et. al. [23] that maxmization of

the Bhattacharyya coefficient is equivalent to the maximization

of the following function

f(x,H) = |H|−1/2
∑

K((x− s)TH−1(x− s))w(s) (8)

To derive the optimum N-dimensional H matrix, we fix the

position x of the ellipsoid in Equation 8. Replacing K by the

gaussian kernel equation, we get

f(H) = c|H|−1/2
∑

exp−(x− s)TH−1 (x− s)

2
w(s) (9)

By taking logarithm on both sides and by using Jensen’s

inequality, we have

ln(f(H)) ≥
∑

ln(c) +
1

2
ln(H−1) +

((x− s)TH−1(x− s))w(s)

2
(10)

Let L denote the RHS of the above equation. Differentiating

L with respect to H−1 and setting it to zero, we derive

H =

∑

s∈S
(x− s)(x− s)Tw(s)
∑

s∈S
w(s)

(11)

Equation 11 is used to update the H matrix in every iteration.

The algorithm is terminated after a fixed maximum number

of iteration or when the Bhattacharyya coefficient saturates.

This iterative procedure is executed for each of the initial

points of the search space. Thus, each of these points con-

verges to a local maxima giving the optimum position and

ellipsoid parameters in the neighbourhood of the initial point.

The ellipsoid with the maximum Bhattacharyya coefficient

localizes the structure most accurately and is the output of the

algorithm. Sufficient number of points is necessary to ensure

convergence to the correct solution.

A. Parallel 3D Localization on Multi-cores

The iterative search for the optimum position, shape and

orientation for each initial random point is independent of each

other. Hence, for a ’n’ core processor, we spawn ’n’ threads,

where each thread simultaneously performs the iterative search

procedure for an initial random point. Since the computations

for each point are independent, there is no need for sharing

memory among the threads. Each thread has local memory

for the meanshift algorithm specific calculations. We thus use

the OpenMP ’parallel for’ construct to distribute the points

amongst the threads. As each search path can take different

times for convergence, the ’schedule dynamic’ clause is used

to dynamically load balance the distribution of points amongst

the threads. This results in a speed-up of 3.5x for the parallel

implementation on the CPU.

B. Parallel 3D Localization on GPUs

We design and implement the parallel variant of the lo-

calization technique on GPUs using the CUDA programming

model [24]. As explained in Section III-B, CUDA exposes two

levels of parallelism - a coarser level using thread blocks and

a finer level using threads within a thread block. The inde-

pendent exploration of different search paths originating from

each initial random point is distributed amongst thread blocks.

In addition, using the finer level of parallelism offered by

threads within a thread block, we further parallelize operations

within each search iteration. We make the threads in a thread

block handle computations for a subset of the voxels from a

cube which completely encloses the ellipsoid. Computations

such as the application of the kernel function, construction of

the candidate histogram, weight assignment to the voxels, H

matrix computation etc. are all done in parallel where each

thread is responsible for a set of voxels. Summation of values

across threads is performed through parallel reduction.

Algorithm 1 depicts the pseudo-code for the GPU acceler-

ated 3D localization algorithm. To reduce the synchronization

operations among threads during histogram computation, we

allow each thread to construct a local histogram of the voxels

handled by that thread. These histograms are stored in shared

memory for fast access. After all local histograms are con-

structed, the histograms are bin wise aggregated by the threads

in parallel to form the global candidate histogram. The CT

volume is stored in a 3D texture and the access to the volume

is ensured to be in a way that maximizes spatial locality and

efficiently utilizes the texture cache. Constant variables like

σ and the target histogram are stored in constant memory

to utilize the constant cache. Data shared by threads within

a block like the H matrix, local histograms etc. are stored

in shared memory for fast retrieval through the broadcast

mechanism supported by CUDA. Enough number of threads

are launched to keep all the cores of each streaming multi-

processor (SM) busy. We try and maximize the occupancy for

each SM. The occupancy is however limited by the amount of

shared memory and the number of registers available per SM.

We also ensure that there is no register spilling. The kernels

are designed to minimize the warp divergence and maximize

the Instructions per cycle (IPC). In addition all global memory

accesses (loading the initial ellipsoid parameters and storing

back the final optimum parameters for each ellipsoid) are

coalesced. This gives us a speed-up of 97x for the GPU

implementation of the algorithm.

V. PERFORMANCE EVALUATION

The proposed structure localization algorithm was evalu-

ated on a system with an Intel(R)Xeon(R) X5450 quad-core

processor clocked at 3 GHz and with 3.25 GB RAM. The

system included a NVIDIA Tesla C2050 GPU as a PCI-

express device. This GPU has 14 multi-processors each having

32 cuda cores, resulting in a total of 448 cuda cores. The cores

are clocked at 1.15 GHz. Each multi-processor has 48 KB of

shared memory and 32 K registers. The GPU device has 3

GB of device memory. The Tesla C2050 GPU has a compute

capability version of 2.0 and cuda toolkit and sdk version 4.0

was used to develop and execute CUDA kernels on the device.

We implemented three variants of the structure localization

algorithm - a sequential version in C, a OpenMP-based parallel

version that utilizes the 4 cores of the Xeon X5450 processor,



Algorithm 1 GPU accelerated 3D localization algorithm

1: Initialize randomly the postions x of N ellipsoids within a fixed search space centred about the structure location in the target
2: Initialize randomly the scales with a certain variance about the scales of the target structure
3: Initialize all orientations to zero and construct the bandwidth matrix according to Equations 2 3 4
4: for each candidate ellipsoid Sc centered at x with a bandwidth matrix H do ⊲ Perform the iterative search for the optimum position, scale and

orientation for each candidate ellipsoid
5: iter cnt← 1
6: bhatcf ← 0 ⊲ Initialize Bhattacharyya coefficient
7: max bhatcf ← 0 ⊲ Maximum Bhattacharaya coefficient across all iterations
8: delta bhatcf ← THRESHOLD
9: xopt ← x

10: Hopt ← H
11: while (delta bhatcf ≤ THRESHOLD and iter cnt < MAX ITERATIONS) do ⊲ Termination criteria for the meanshift search
12: for all CUDA threads t ∈ CUDA thread block Bc do ⊲ One CUDA thread block is launched for each candidate ellipsoid
13: V (t)← set of voxels handled by thread t
14: for each voxel v ∈ V (t) that satisfies Equation 5 do ⊲ for every voxel inside the candidate ellipsoid

15: LCHt(bv)← LCHt(bv) + c exp −dv
2

⊲ LCH is the partial candidate histogram local to each thread, bv is the bin index for
voxel v and dv is the distance of voxel v from the center of the ellipsoid

16: GCHc ← global candidate histogram ⊲ all threads do a parallel reduction to aggregate the local histograms and form the global
histogram

17: for each voxel v ∈ V (t) that satisfies Equation 5 do ⊲ for every voxel inside the candidate ellipsoid

18: wv ←

√

GCHc(bv)
TH(bv)

⊲ A weight is computed for each voxel as the ratio of the bin heights of the candidate histogram and the target

histogram. TH refers to the target histogram
19: δxv ← GH(v)wvsv ⊲ δxv denotes the contribution of the voxel v to the change in the position of the ellipsoid and is computed

according to Equation 7

20: xnew ←

∑

∀v
δxv

∑

∀v
GH (v)wv

⊲ xnew is the new position of candidate ellipsoid and all threads do a parallel reduction to compute the

summations required in this step
21: for each voxel v ∈ V (t) that satisfies Equation 5 do ⊲ for every voxel inside the candidate ellipsoid

Repeat Steps 15 to Step 18 for the candidate ellipsoid Sc centered at xnew

22: δHv ← (xnew − sv)(xnew − sv)Twv ⊲ δHv denotes contribution of a voxel to the H matrix

23: Hnew ←

∑

∀v
δHv

∑

∀v
wv

⊲ Hnew is the optimum H matrix at the new position of the candidate ellipsoid and all threads do a parallel

reduction to compute the summations required in this step

24: bhatcf ←
√

(GCHc)(TH)
25: delta bhatcf ← max bhatcf − bhatcf
26: if bhatcf > max bhatcf then

27: max bhatcf ← bhatcf
28: xopt ← xnew

29: Hopt ← Hnew

30: iter cnt← inter cnt+ 1
31: Among the N final candidate ellipsoids, output xopt and Hopt corresponding to the ellipsoid with the maximum Bhattacharyya coefficient.

and a CUDA-based GPU accelerated version. We evaluate the

quality and accuracy of the proposed algorithm as well as the

performance and scalability for the three variants described

above.

The algorithm was tested on 3 structures in CT volumes

- brain stem, eye and the parotid gland. We tested on 17

CT volumes for the brain stem localization, 19 volumes for

the right eye and 9 volumes for the left parotid gland. The

experiments were conducted with N = 400 initial candidate

ellipsoids, a maximum of 30 iterations and a termination

threshold value of 0.02. All values reported are averages of

three runs. Figure 2 shows the ground truth for these structures

and the corresponding localized region as detected by our

algorithm for one volume. Though the algorithm performs 3D

localization, for easy visualization, we depict the 2D central

slices of the volume. The ground truth is shown after contrast

enhancement to enable easy viewing of the structure. However,

as can be seen in the images showing the localization results,

the contrast resolution of medical images is low, which makes

the task of accurate localization very difficult.

Figure 3 shows the extent to which appropriate scales and

orientations are captured. We see that our approach, which

computes the orientation and scale parameters in tandem

in continous space rather than in discrete space, is able to

adapt to the scale and orientations of the brainstem structure

quite smoothly. The localized region in the XY plane (see

Figure 2(b)) is almost a circle while in XZ and YZ planes,

(see Figure 3), the scale and orientations of the plotted ellipse

adapts to the orientation and shape of the structure.

We measure the quality of the localization achieved using

two metrics: coverage ratio (CR) and tightness ratio (TR).

Coverage ratio is a measure of the extent of coverage of the

structure of interest within the localized region and is defined

as the percentage volume of the structure that is encapsulated

within the localized region, i.e CR = (S∩L)
S

where S denotes

the structure of interest and L denotes the localized region.

The tightness ratio (TR), is a measure of how tightly the

structure is localized and is defined as the percentage volume

of the localized region that is composed of the structure under

consideration, i.e TR = (S∩L)
L

.



(a) Brain Stem (b) Right Eye (c) Left Parotid

Fig. 2. Contrast-enhanced ground truth (left) and localized regions (right) (central slice along the XY plane) for brain stem, right eye, and the left parotid
gland

Fig. 3. Contrast-enhanced ground truth and localized regions (central slice
along the XZ plane (top) and the YZ plane (bottom) for the brain stem

Structure Seq Multi-core accel GPU accel

Brain Stem 545.8 151.9 5.5
Right Eye 269.3 73.9 2.9

Left Parotid 1070.9 302.7 9.39

TABLE I
AVERAGE LOCALIZATION TIME IN SECONDS FOR THE SEQUENTIAL,
MULTI-CORE ACCLERATED AND THE GPU ACCELERATED VARIANTS.

Figure 4(a) shows the plot of the coverage ratio. In general,

the quality of localizations is better for the brain stem and

the right eye (brain stem and the right eye are localized with

atleast 50% coverage in about two-thirds of the volumes). This

is because, we use a intensity histogram based approach for

localization and the contrast ratios are higher for the brain stem

and the right eye as compared to the parotid gland. In 40%

of the runs, we are able to encapsulate more than 90% of the

structure, while in 65% of the runs we are able to capture the

structure partially with atleast 50% of coverage. A coverage

ratio of zero implies an incorrect localization, which accounts

for 16% of the runs. Figure 4(b) plots the tightness ratio for

the four structures. On an average about 20% of the localized

region is made up of the structure being localized. Since, we

use a simplistic intensity histogram as our target description

function, shifts in intensity profiles across volumes as well

as the low contrast ratio inherent in medical images, impacts

the quality of localization. One approach to address this is to

plug-in better descriptor functions (feature-based and domain

specific), while trading off between the computational intensity

of the training and detection and the required accuracy levels.

Table I shows the average localization times. We see that

the multi-core version yields an average speedup of about

3.5x over the sequential variant on the 4 cores, while the

GPU accelerated version yields an average speedup of about

97x over the sequential variant. Thus, leveraging the GPUs

as massively parallel computing devices yields two orders of

magnitude improvements in localization speeds.

To evaluate the scalability of the proposed technique, we

varied the search space and measured the quality as well as

performance. Figure 5 plots the localization times as well as

the coverage ratio for brain stem for one volume as we increase

the dimensions of the search space (we increase the x, y,

z dimensions of the search space as well as the number of

search points keeping the number of search points density a

constant). As expected we see that the quality improves as we

increase the search space. The GPU accelerated variant scales

extremely well as compared to the other two. Thus, leveraging

the graphics processors as massively parallel computing de-

vices yields large orders of improvements in both localization

speed as well as scalability.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an iterative approach for structure

localization in medical volumes that is based on the adaptive

bandwidth mean-shift algorithm for object detection (ABM-

SOD). The ABMSOD algorithm, originally used to detect

2D objects in non-medical images, is extended and tuned

to localize 3D anatomical structures in medical volumes. To

enable fast localization, optimized parallel implementations

are developed on multi-cores using OpenMP and GPUs using

CUDA. Our evaluations with three structures (brain stem, eye

and parotid) in CT volumes shows that our algorithm is able

to localize structures with reasonable accuracy in many cases.

However, we noted that the algorithm is sensitive to intensity

changes across volumes and has a poor performance when

the intensity difference between the train and test volumes

is high. To address this issue, we plan to further investigate

the algorithm with different target descriptor functions like

local binary patterns (LBP), histogram of gradients or haar

features. Features like LBP are intensity and rotation invariant

and hence should be able to adapt to large differences in

intensity between train and test volumes.
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