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Abstract. Human gait is an attractive modality for recognizing people at a dis-
tance. In this paper we adopt an appearance-basedapproach to the problem of gait
recognition. The width of the outer contour of the binarized silhouette of a walking
person is chosen as the basic image feature. Different gait features are extracted
from the width vector such as the dowsampled, smoothed width vectors, the ve-
locity profile etc. and sequences of such temporally ordered feature vectors are
used for representing a person’s gait. We use the dynamic time-warping (DTW)
approach for matching so that non-linear time normalization may be used to deal
with the naturally-occuring changes in walking speed. The performance of the
proposed method is tested using different gait databases.

1 Introduction

Gait refers to the style of walking of an individual. Often in surveillance applications, it
is difficult to obtain face or iris information at a resolution that is sufficient for recogni-
tion. Studies in psychophysics [1] reveal that humans have the capability of recognizing
people from even impoverished displays of gait, indicating the presence of identity in-
formation in the gait signature. From early medical studies [2], it appears that there are
24 different components to human gait and that if all gait movements are considered,
gait is unique.

Approaches to gait recognition can be broadly classified as being model-based and
model-free. Examples of the first kind include [3], [4] and [5]. In [3], the gait signature
is extracted by fitting the movement of the thighs to an articulated pendulum-like mo-
tion model. In [4] several ellipses are fit to different parts of the binarized silhouette of
a person. Statistical analysis of the parameters of these ellipses such as the location of
centroid, eccentricity etc. are used to extract features for recognition. However, in the
presence of noise, the estimates of these parameters may not be reliable. Examples of
the model free approach include the work of Huang et al. [6] who use optical flow to
derive the motion image sequence corresponding to a walk cycle. Principal components
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analysis is then carried out to derive the so-called eigengaits for recognition. Other ex-
amples include the works of [7] where activity specific static parameters were used for
gait recognition. The smaller set of parameters extracted is shown to have greater re-
silience to viewing direction. Representation using such a small set of parameters may
however, ignore valuable structural cues about a person and may adversely affect per-
formance in large datasets.

For normal walk, gait sequences are repetitive and exhibit nearly periodic behavior.
Background subtraction is used to convert the video sequence into a sequence of bina-
rized images. We choose the width of the outer contour of the silhouette as our basic im-
age feature since it contains structural as well as dynamical aspects and compactly repre-
sents gait of an individual. From the basic width vector, direct (smoothed and downsam-
pled) and eigen-based features are derived. Sequences of such temporally-ordered fea-
ture vectors are used for representing a person’s gait. Typically, we have ������ contigu-
ous half cycles of walking data per subject and the number of frames per cycle ranges be-
tween � to ��� . Since the amount of training data is rather limited for a statistical modeling
approach, it may not be possible to reliably estimate the parameters of the model. There-
fore, we use a more direct matching scheme for video comparison. Further, in the case
of walking, unlike marching, different gait cycles tend to have unequal lengths. Hence,
a classifier based on direct template-matching is not suitable. Dynamic time warping
[8], on the other hand uses non-linear time normalization to compare test and reference
gait patterns. The performance of different gait measurements is tested using the UMD,
CMU and USF databases.

The organization of the paper is as follows. The basic width vector and its derivative
features and the matching using DTW are explained in Section 2. . Experimental results
are given in Section 3 while Section 4 concludes the paper.

2 Gait Representation

2.1 The Width Vector

An important issue in gait is the extraction of salient features that will effectively capture
gait characteristics. In order to be robust to changes of clothing and illumination it is
reasonable to consider the binarized silhouettes of the subject. We choose the width of
the outer contour of the silhouette as the feature vector. The physical structure of the
subject as well as the swing of the limbs and other details of the body are retained in the
width vector. The width along a given row is computed as the difference in the locations
of the right-most and the left-most boundary pixels in that row and a width vector is
generated for each frame. Note that the pose information is lost in the width-generation
process. The overlay of the width vectors are given in Figure 1(b) for one individual. It
should be noted that the width overlays does not capture the temporal aspect of the width
vectors and the distinction between individuals is accentuated when the width vectors
are plotted as a function of time as shown in Figure 1(a).

The variation of each component of the width vector can be regarded as the gait sig-
nature of that subject. From the temporal width plots, it is clear that the width vector is
roughly periodic and gives the extent of movement of different parts of the body. The
brighter a pixel, the larger is the value of the width vector in that position.
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(a) (b)

Fig. 1. (a)Temporal plot of width vectors and (b) their overlay. The different regions of the body
can be seen. In the temporal plot, the brighter a pixel, the larger is the magnitude of the width
vector in that position.

2.2 Features derived from the basic width vector

In this section, we discuss different features derived from the basic width vector for gait
recognition. The idea is to arrive at a compact representation that exploits redundancy
in the gait data for dimensionality reduction.

The features we used include (i) smoothed and down-sampled versions of the width
vector and (ii)differenced width vectors. The motivation behind smoothing and down-
sampling stems from the fact that the original width vector has redundancies. Hence, it
should be possible to discriminate reasonably even at much lower dimensions. We are
also interested in studying the effect of dynamics on gait identification. One way to ex-
tract the dynamics is to compute the velocity profile by taking the difference of succes-
sive frames in the walking sequence. Obviously, most of the structural information like
girth of the person etc. is lost when we go the velocity domain. It is to be expected that
neither dynamic nor structural information, by itself, will be sufficient to capture gait.
Both are necessary and cannot be decoupled. Figure 2 (a) shows the raw width vector
for an arbitrary frame while Figures 2 (b) and (c) show the case when the width vector
is smoothed and down-sampled by a five point and 21 point filter respectively.

From the temporal width plot, we note that although the width vector changes with
time as the person transits through a gait cycle, there is a high degree of correlation
among the width vectors across frames. Most changes occur in the hand and leg regions.
The rest of the body parts do not undergo any significant changes during a gait cycle.
Hence, one would intuitively expect that the variations of the width vector may be re-
stricted to a lower dimension subspace. Given the width vectors �����������������������! "�$# ,for
 frames ���$%&�('�)+* , we compute the eigen vectors ��,-�$���$�.�����$��,-�!/��0# correspond-
ing to the eigen values of the scatter matrix arranged in the descending order and recon-
struct the corresponding width vectors using 12�435/�� most significant eigen vectors
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(a) (b) (c)

Fig. 2. (a) Raw width vector (b) Down-sampled and 5-pt smoothing width vector and (c) smooth-
ing by a 21 point filter.
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2.3 Matching Gait Sequences

A typical walking sequence has approximately 60 frames consisting of four half cycles
of the subject walking. In the absence of large training data therefore, direct video-based
matching is better suited than the use of statistical models. Direct frame-by-frame match-
ing is not a realistic scheme since people may slightly alter their speed and style of walk-
ing. Instead of restricting the the frames of possible matches, it would be prudent to allow
a search region at each time instant, during evaluation. Therefore, DTW [8] is chosen as
the matching scheme. The key steps in the DTW algorithm are enforcing end point con-
straints, computing local and cumulative error computation followed by backtracking to
obtain the warping path. To satisfy the end-point constraint, all the sequences are pro-
cessed so that the first and the last frames are both rest stances. The Euclidean distance is
used as the local distance measure when comparing two width vectors. The cumulative
distance at the end of the warping path is recorded as the matching score between the
reference and test patterns.

3 Experimental Results

In this section, we give a brief description of the databases that we have used in our
experiments and demonstrate the performance of the proposed method for gait-based
human identification.

3.1 UMD Database

The UMD dataset 4 contains outdoor gait sequences captured by two cameras placed
at orthogonal to each other. 44 subjects are recorded in two sessions. We train with the

4 http://degas.umiacs.umd.edu/hid
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video data collected from the first session and test with that of the second session. For
the UMD database the number of contiguous walk cycles varies from 4 to 6. To main-
tain uniformity, we use four half cycles for matching. The recognition results for the
different gait measurements are presented in Table 1. We notice that even after consid-
erable downsampling and smoothing, the recognition rates do not deteriorate rapidly.
For the eigen features, we note that using just two eigenvectors an accuracy of ��� % is
achievable. Increasing the number of eigen-vectors led to lower accuracy, since higher
order eigen-vectors tend to be noisy. Henceforth, we use only the first two eigenvectors
for computing eigen features. However, the accuracy drops significantly if only the ve-
locity information is used. Thus, for gait recognition both structural as well as dynamic
information are important.

Rank
Experiment Feature Considered 1 2 3 4 5
Effect of Raw width vector 79.07 81.40 83.72 86.05 86.05
smoothing and downsampling 5 point smoothed 42 dim feature 76.74 83.72 83.72 88.37 88.37
the raw width vector 11 point-smoothed 21 dim feature 76.74 83.72 83.72 83.72 90.70

21 point-smoothed 11 dim feature 79.07 86.05 86.05 88.37 90.70
Eigen Decomposition Using eigen vector no.1 73.1 75.2 80.0 80.0 84.0
of the width vector and Using eigen vector no.1,2 80 87 90 90 91
reconstruction using different Using eigen vector no.1,2,3 68 80 84 84 84
eigen vectors Using eigen vector no.1,2,3,4 73 77 84 84 84

Using eigen vector no.1,2,3,4,5 70 73 79 82 84
Velocity Profile Smoothed and Differenced 168 dim 41.9 51.6 61.2 70.9 74.1

Eigen decomp. of velocity profile 56 75 76 80 83
Table 1. UMD database: Analysis of Different features for gait recognition

3.2 CMU database

The CMU dataset 5 consists of 25 subjects walking on a treadmill, under different con-
ditions such as slow walk, fast walk and walk when carrying a ball. Seven cameras are
mounted at different angles. The first half of the gait sequence is used for training while
the second half is used for testing. This dataset shows the effect of change in walking
speed on recognition. The results are given in Table 2. It is seen that the eigensmoothed
feature in general performs better than the direct smoothed feature since eigensmoothing
exploits spatio-temporal redundancy rather than just the spatial sense. When the gallery
is the slow walk sequence and the probe is the fast walk sequence the performance is
found to be inferior than the case when the gallery and probe are both slow walk se-
quences. DTW is known to perform badly [9] when the ratio of gallery-length to probe-
length is less than �X%&� or more than � . In the CMU dataset, the ratio of cycle-length of
the gallery to the cycle-length in the probe is atmost 1.36. The corresponding person was

5 http://hid.ri.cmu.edu
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Rank
Experiment Feature Considered 1 2 3 4 5
Slow Vs Slow Direct Smoothed feature 70.8 83.3 87.5 95.8 95.8

Eigen Smoothed Feature 95.8 95.8 95.8 95.8 100.0
Fast Vs Fast Direct Smoothed feature 83.3 83.3 83.3 83.3 87.5

Eigen Smoothed Feature 95.8 95.8 95.8 95.8 100.0
Fast vs. Slow Direct Smoothed feature 54.1 75.0 87.5 87.5 87.5

Eigen Smoothed Feature 75.0 83.3 83.3 83.3 87.5
Ball Eigen Smoothed feature 95.4 100.0 100.0 100.0 100.0

Table 2. CMU database: Analysis of Different features for gait recognition

correctly identified as the top match. Thus the dynamic time warping method is robust
to changes in walking speed. The value of the ratio for one of the mismatched cases was
1.15. To analyze this we consider a few frames in the gait cycles of the incorrectly rec-
ognized person under slow and fast-walk modes in Figures 3 (a) and (c). As is apparent
from the figure, the posture as well as hand swings for the person are quite different in
the cases of fast-walk and slow-walk. Thus the change in body dynamics and stride of
the person rather than the length of the walk cycle are responsible for the bad recogni-
tion performance. Figures 3 (b) and (d), show the warping paths for the person with the
highest ratio and the incorrectly recognized person, respectively.

Finally, the high accuracy in the case when the subjects are walking with a ball in
his hand suggests that certain parts of the body may exhibit a more consistent pattern for
recognition. This has also been noted in [10].

3.3 USF Database

The USF database 6 consists of outdoor gait sequences of 71 subjects walking along
an elliptical path on two different surfaces (Grass and Concrete) wearing two different
types of footwear (A and B). Two cameras, R and L capture that data. Seven experiments
are set up as shown in Table 3. The USF database has the largest number of individu-
als among the databases that we have considered. The direct and eigen-smoothed width
features were again considered. The eigen-smoothed feature gave better performance
compared to the direct smoothed feature in this case as well. The CMC curve for the
different experiments as described in Table 3 are shown in Figure 4. From the graph,
several conclusions can be drawn. It is clear that difference in surface leads to the worst
recognition performance while difference in viewing angle is affected least.

4 Conclusion

Appearance-based features were derived from the video sequence of subjects walking,
captured both indoors and outdoors. The width of the outer contour of the binary sil-
houette was used as the basic feature. Different features were extracted from the width

6 http://marathon.csee.usf.edu/GaitBaseline/
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Fig. 3. Sample images the same subject corresponding to (a) slow-walk and (b) fast-walk(Notice
the change in posture and body dynamics) (c)-Warping path for person with largest training to
testing ratio (d) Warping path for person in (a) and (b).

Experiment Probe Difference
A G,A,L (71) View
B G,B,R (41) Shoe
C G,B,L (41) Shoe, View
D C,A,R (70) Surface
E C,B,R (44) Surface, Shoe
F C,A,L (70) Surface, View
G C,B,L (44) Surface, Shoe, View

Table 3. USF Dataset: 7 probe sets with the common gallery being G,A,R consisting 71 subjects.
The numbers in the brackets are the number of subjects in each probe set.
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Fig. 4. CMS curves for USF database.

vector and dynamic time warping was used to match gait sequences. Eigenanalysis of
the width vector shows that the gait signal evolves on a lower dimensional subspace and
that gait possesses discriminative information. The method was found to be reasonably
robust to changes in speed. The contribution of dynamic information for gait recognition
was also studied. It was also found that the leg region by itself gave better recognition
performance for one of the databases. One of our future areas of our research involves a
systematic study of component level features extracted from the basic feature and com-
bining the evidences and to study effects of viewing angle changes on recognition.
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