
May 24, 2004 11:17 WSPC/Trim Size: 9.75in x 6.5in for Review Volume gait

CHAPTER 1

GAIT-BASED HUMAN IDENTIFICATION FROM A MONOCULAR

VIDEO SEQUENCE

Amit Kale

Center for Visualization and Virtual Environments

1, Quality St Suite 800-B

KY 40507 USA

E-mail: amit@cs.uky.edu

Aravind Sundaresan†

Amit K. RoyChowdhury

Department of Electrical Engineering

University of California, Riverside

CA 92521 USA

E-mail: amitrc@ee.ucr.edu

Rama Chellappa

† Center for Automation Research

University of Maryland at College Park

MD 20742 USA

E-mail:rama@cfar.umd.edu

Human gait is a spatio-temporal phenomenon that characterizes the motion char-
acteristics of an individual. It is possible to detect and measure gait even in low-
resolution video. In this chapter, we discuss algorithms for identifying people by
their gait from a monocular video sequence. Human identification using gait, sim-
ilar to text-based speaker identification, involves different individuals performing
the same task and a template-matching approach is suitable for such problems.
In situations where the amount of training data is limited, we demonstrate the
utility of a simple width feature for gait recognition. By virtue of their determin-
istic nature, template matching methods have limited noise resilience. In order
to deal with noise we introduce a systematic approach to gait recognition by
building representations for the structural and dynamic components of gait using
exemplars and hidden Markov models (HMMs). The above methods assume that
an exact side-view of the subject is available in the probe sequence. For the case
when the person walks at an arbitrary angle far away from the camera we present
a view invariant gait recognition algorithm which is based on synthesizing a side
view of a person from an arbitrary monocular view.
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1. Introduction

Automated person identification is an important component of surveillance. An ef-

fective approach to person identification is to reduce it to the problem of identifying

physical characteristics of the person. This method of identification of persons based

on his/her physiological/behavioral characteristics is called biometrics. Established

biometric methods range from fingerprint and hand-geometry techniques to more

sophisticated methods based on face recognition and iris identification. Unfortu-

nately, no single biometric is perfect or complete. Fingerprints and hand-geometry

are reliable but require physical contact. Although, signatures based on face and iris

are non-intrusive in nature, the applicability of all these methodologies is restricted

to very controlled environments. In fact, current technology is capable of recogniz-

ing mostly frontal faces. At the time of writing, iris recognition is being attempted

at distances of not more than five meters.

When person identification is attempted in natural settings such as those aris-

ing in surveillance applications, it takes on a new dimension. Biometrics such as

fingerprint or iris are no longer applicable. Furthermore, night vision capability (an

important component in surveillance) is usually not possible with these biometrics.

Even though an IR camera would reveal the presence of people, the facial features

are far from discernible in an IR image at large distances. A biometric that can

address some of these shortcomings is human ’gait’ or the walking style of an in-

dividual. The attractiveness of gait as a biometric arises from the fact that it is

non-intrusive and can be detected and measured even in low resolution video. Fur-

thermore, it is harder to disguise than static appearance features such as a face and

it does not require a cooperating subject.

Early research on gait primarily involved psychophysical studies of gait viz.

studying the ability of human observers to recognize gait. The belief that humans

can distinguish between gait patterns of different individuals is widely held. Intu-

itively, it is possible to think of the qualities of walk such as stride length or body

swing that help a perceiver identify an approaching figure even before the face be-

comes discernible. The earliest and most recognized psychophysical study of human

perception of gait was the work of Johansson 1. Small light bulbs were attached to

the body joints of a darkly dressed walker. In this way only gait related cues were

available and thus the perception of pure biological motion could be examined.

When these point-light displays were static, the random collection of dots were var-

iously interpreted as star constellations. However, as soon as the figures moved, the

points of light were immediately perceived to be a human in motion. Motivated

by Johanssons work, Kozlowski and Cutting 2 investigated whether observers could

identify the gender of a point-light walker. The demonstration that gender could

be extracted from gait provided insight into how observers might discriminate be-

tween gait patterns of different individuals. The prospect for observers being able to

identify individuals from their gaits was thus encouraging. Cutting and Kozlowski 3

demonstrated that perceivers could reliably recognize themselves and their friends
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from dynamic point-light displays. Barclay et al. 4 suggested that individual walking

styles might be captured by differences in a basic series of pendular limb motions.

Psychophysical evidence that there exists identity information in gait spurred

development of computer vision based algorithms for gait-based human recognition.

We attempt to give a summary of some of examples below, but the listing is by no

means complete. Most of the methods for gait recognition are appearance based.

Appearance based methods work reasonably well in the face of inaccurate back-

ground segmentation, changes in speed etc. However, such methods cannot tolerate

drastic changes in clothing. Cunado et al. 5 extract a gait signature by fitting the

movement of the thighs to an articulated pendulum-like motion model. Huang et

al. 6 use optical flow to derive a motion image sequence for a walk cycle followed

by eigenanalysis of the binarized silhouette to derive what are called eigen gaits.

Benabdelkader et al. 7 use image self-similarity plots as a gait feature. Tolliver

and Collins 8 use a spectral partitioning framework for identifying humans by their

shape. Lee and Grimson 9 propose an approach in which several ellipses are fitted

to different parts of the binarized silhouette of the person and the parameters of

these ellipses such as location of its centroid, eccentricity etc. are used as a feature

to represent the gait of a person. Hayfron-Acquah et al 10 proposed a method based

on analyzing the symmetry of human motion using the Generalised Symmetry Op-

erator. Han and Bhanu 11 proposed a gait-energy image approach for recognition.

2. Feature Selection

An important issue in gait is the extraction of appropriate salient features that will

effectively capture the gait characteristics. The features must be reasonably robust

to operating conditions and should yield good discriminability across individuals.

As mentioned earlier, we assume that the side view of each individual is available.

Intuitively, the silhouette appears to be a good feature to look at as it captures the

motion of most of the body parts. It also supports night vision capability as it can

be derived from IR imagery also. While extracting this feature we can either use the

entire silhouette or use only the outer contour of the silhouette. The choice of using

either of the above features depends upon the quality of the binarized silhouettes.

If the silhouettes are of good quality, the outer contour retains all the information

of the silhouette and allows a representation, the dimension of which is an order of

magnitude lower than that of the binarized silhouette. However for low quality, low

resolution data, the extraction of the outer contour from the binarized silhouette

may not be reliable. In such situations, direct use of the binarized silhouette may

be more appropriate.

We choose the width of the outer contour of the silhouette as one of our feature

vectors. In order to generate the width vectors background subtraction 12 is first

applied to the image sequence and the resulting motion image is binarized into

foreground and background pixels. A bounding box is then placed around the part of

the motion image that contains the moving person. Given the binarized silhouettes,
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Fig. 1. Width vector profile for several gait cycles of two individuals .

the left and right boundaries of the body are traced. The width along a given row is

simply the difference in the locations of the right-most and the left-most boundary

pixels in that row. It is easy to see that the norm of the width vector show a

periodic variation. In Figure 1 we show plots of the width profiles of two different

individuals for several gait cycles. Since we use only the distance between the left

and right extremities of the silhouette, the two halves of the gait cycle are almost

indistinguishable. From hereon, we refer to half cycles as cycles, for the sake of

brevity. In Figure 1, the x-axis denotes the frame index while the y-axis denotes

the index of the width vector (the row index). The ith horizontal line in the image

shows the variations in the ith element of the width vector as a function of time.

A brighter gray-scale indicates a higher value of the width. We observe that within

each cycle, there is a systematic temporal progression of width vector magnitude,

viz. the dynamics. A similar observation has been made in 13 where the gait patterns

are analyzed as Frieze patterns. For the two width profile plots shown in Figure 1

, the differences are quite visible. For instance, by observing the bright patterns in

the upper region of the two images we see that the brightness is more pronounced in

the first image as compared to the second. This area of the plot corresponds to the

swings of the hand. Secondly, note that the brightness gradient (which translates to

velocity in the video sequence) in the lower part of the images is more pronounced

for Person 1 as compared to Person 2. This part of the plot corresponds to the

swings of the extremities of the foot. Additionally, note that the height, as well as

the visibility of the neck part of the two persons are different. It must be pointed out,

however, that the differences need not be so pronounced for all individuals. Thus,

the width profile contains structural and dynamic information peculiar to each

individual. Also, by definition, the width vector is translation-invariant. Hence, the

width of the outer contour of the silhouette is indeed a potentially good candidate

as a feature.



May 24, 2004 11:17 WSPC/Trim Size: 9.75in x 6.5in for Review Volume gait

Gait-based Human Identification from a monocular video sequence 5

3. Gait-Based Human Identification Using Appearance Matching

A gait cycle corresponds to one complete cycle from rest (standing) position to-right-

foot-forward-to-rest-to-left-foot-forward-to-rest position. The movements within a

cycle consist of the motion of the different parts of the body such as head, hands,

legs etc. The characteristics of an individual are reflected not only in the dynamics

and periodicity of a gait cycle but also in the size and shape of that individual. Our

aim is to build a model for representation and recognition of individual gait.

In a pattern classification problem, choice of the feature as well as the classifier

is important. As discussed earlier, if the gait data is clean, the width of the outer

contour of the silhouette of the person can be a good feature for gait recognition.

From the temporal width plots, we note that although the width vector changes

with time within a gait cycle, there is a high degree of correlation among the width

vectors across frames. Most changes occur in the hand and in the leg regions. Hence,

it is reasonable to expect that gait information in the width vector can be derived

with much fewer coefficients. Given the width vectors {W (1), · · · , W (N)},for the N

frames W (.) ∈ RM , we compute the eigen vectors {V (1, ) · · · , V (M)} corresponding

to the eigen values of the scatter matrix arranged in the descending order and

reconstruct the corresponding width vectors using m(< M) most significant eigen

vectors as

Wr(i) = (

m∑

j=1

wjV (j)) + W̄

where wj =< W (i), V (j) > and W̄ = W (1)+···+W (N)
N

. Figure 2 shows the width vec-

tors reconstructed using two eigenvectors. Temporally-ordered sequences of eigens-

(a) (b)

Fig. 2. Effect of eigen decomposition and reconstruction on the width vectors. (a) Overlapped
raw width vectors (b) Smoothed width vectors. Notice that the leg region (the bottom half of the
figures) contain a significant portion of the dynamics.

moothed width vectors are used for compactly representing the person’s gait.
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For a normal walk, gait sequences are repetitive and exhibit nearly peri-

odic behavior. The gait problem is analogous to text-based speaker identifica-

tion/verification wherein different individuals utter the same text but differ only

in the characteristics of their utterance 14. A template matching approach is suit-

able for such problems especially if the amount of training data is limited. Typically,

gait cycles when taken at different times tend to be unequal in length due to changes

in walking speeds of the individuals. To deal with this issue, dynamic time-warping

(DTW) is employed for matching gait sequences. The DTW method was originally

developed for isolated word recognition 15, and later adapted for text-dependent

speaker verification 14. DTW uses an optimum time expansion/compression func-

tion for producing non-linear time normalization so that it is able to deal with

misalignments and unequal sequence lengths of the probe and the reference gait

sequences. A distance metric (usually the Euclidean distance) defined as a function

of time is computed between the two feature sets representing the gait data. A

decision function is arrived at by integrating the metric over time. Assuming that

the first frame of the reference and probe sequence are both indexed as 1 and the

last frames of the reference and probe sequences be indexed as X and Y , respec-

tively the match between the two sets can be represented by a sequence of K points

C(1), C(2), ...., C(k), ..., C(K), where C(k) = (x(k), y(k)), and x(k) is a frame in-

dex of the probe sequence and y(k) is a frame index of the reference sequence.

Here, C(k) represents a mapping of the time axis of probe sequence onto that of

the reference sequence. The sequence F = C(1), C(2), ....C(k), ...., C(K) is called

the warping path. The process of time normalization involves computing the cu-

mulative distance subject to endpoint, local continuity and global path constraints
16.

Table 1. Cumulative match scores for the UMD
database using different eigen-features.

Feature\Rank 1 2 3 4 5

Eigenvector 1 73 75 80 80 84

Eigenvectors 1,2 80 87 90 90 91

Eigenvectors 1,2,3 68 80 84 84 84

Eigenvectors 1,2,3,4 73 77 84 84 84

We experimented with different databases to test our method including the

UMD, CMU and MIT datasets 17. Table 1 shows the gait recognition result for the

UMD dataset using different number of eigenvectors for reconstruction. Note that

by using just the first two eigenvectors an accuracy of 80% is achievable. Other

eigenvectors are noisy and, in fact, tend to lower the accuracy. We also considered

the USF databasea which has been identified as the gait challenge database 18.

The database has variations as regards viewing direction, shoe type, surface type.

aMore details about this database can be found at http://figment.csee.usf.edu/GaitBaseline/
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Also the subjects were asked to carry a briefcase for one testing condition. The

USF database has the largest number of individuals among all the databases. It has

variations with respect to floor surface (grass (G) or concrete(C)), shoe type (A or

B), and camera viewing direction (left (L) or right (R)). The reference for all the

experiments was chosen to be (G, A, R). The number of frames corresponding to four

half cycles varied from 65 to 90. Different probe sequences for the experiments along

with the cumulative match scores are given in Table 2 for the baseline algorithm 19

as well as our method using the eigensmoothed width feature. Note that recognition

performance suffers most due to difference in surface characteristics, and least due

to difference in viewing angle. An examination of the USF database revealed that

the silhouettes provided were noisier compared to the previous datasets. We wanted

to see what the performance would be by using the binary silhouettes directly as the

feature. In this case we used the binary correlation distance in the local distance

computation. As can be seen from the last two columns of Table 2 usage of the

binarized silhouettes yields better performance numbers compared to the width

vector in this case.

Table 2. Probe Sets and match scores for the USF database using the baseline algo-
rithm and our approach using width feature and entire binary silhouette.

Experiment (Probe) Baseline Width Vector Binary Silhouette
Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5

A (G, A,L) 79 96 79 91 84 97

B (G, B, R) 66 81 67 79 83 91

C (G,B, L) 56 76 30 55 59 79

D (C, A, R) 29 61 17 42 41 64

E (C,B, R) 24 55 15 39 24 53

F (C,A, L) 30 46 16 30 27 51

G (C, B, L) 10 33 9 31 24 38

4. A Framework for gait-based person identification using

continuous HMMs

In the previous section we saw the application of a simple template matching ap-

proach to gait recognition. A careful analysis of gait would reveal that it has two im-

portant components. The first is a structural component that captures the physical

build of a person e.g. body dimensions, length of limbs etc. The second component

is the motion kinematics of the body during a gait cycle. A recent paper by Veer-

araghavan et al 20 evaluates the contribution from these factors in vision-based gait

recognition. In this section we propose a systematic approach to gait recognition

by building representations for the structural and kinematic components of gait. A

closer examination of the physical process behind the generation of gait signature

reveals that, during a gait cycle, it is possible to identify certain distinct phases or

stances. In Figure 3, we show five frames that we have picked from a gait cycle for

two individuals.
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(a) (b)

Fig. 3. Stances corresponding to the gait cycle of two individuals .

In the first stance, the person holds the two feet together. In the second, he is

just about to start and his hand is slightly raised. In the third stance, the hands

and the feet are separated, while in the fourth, the hands and feet are displaced

to a maximum. Finally, in the fifth stance, the person is returning to the rest

state. Clearly, every person transits among these successive stances as he/she walks.

Although, these stances are generic, there exist differences not only in their image

appearance based on the physical build of an individual but also in the way an

individual transits across these stances as he/she walks which represents the gait

kinematics of the individual. A reasonable way to build a structural representation

for a person is to pick N exemplars (or stances) E = {e1, · · · , eN} from the pool

of images that will minimize the error in representation of all the images of that

person. Given the image sequence for an unknown person Y = {y(1), · · · ,y(T )},

these exemplars can be directly used for recognition as

ID = arg minj

T∑

t=1

minn∈{1,··· ,N}d(y(t), ej
n),

where y(t) represents the image of an unknown person at the tth time instant, while

ej
n represents the nth exemplar of the jth individual. Note, however, that such a

simple discrimination criterion is susceptible to failures not only due to noise but

more importantly due to the presence of structural similarities among people in the

database. To improve discriminability, the kinematics of the data must be exploited.

A closer look at the gait cycle reveals that there is a temporal progression in the

proximity of the observed silhouette to the different exemplars. Note that at the

start of the gait cycle, a frame is closer to the first exemplar as compared to the

other four. As time progresses, the frame will be closer to the second exemplar as

compared to the others and so on. Underlying the proximity of the silhouette to

the exemplars is a probabilistic dependence across the exemplars. This encompasses

information about how long a gait cycle persists in a particular exemplar as well

as the way in which the gait cycle transits from one exemplar to the other. For

two people who are similar in physical build, this kinematic knowledge can be used

to improve the recognition performance. Because the transitions are systematic, it

is possible to model this probabilistic dependence by a Markov matrix as shown

below.

A = [P (ei(t)|ej(t − 1))] (1)



May 24, 2004 11:17 WSPC/Trim Size: 9.75in x 6.5in for Review Volume gait

Gait-based Human Identification from a monocular video sequence 9

for i, j ∈ {1, · · · , N}. The matrix A encodes the kinematics in terms of state du-

ration densities and transition probabilities. Often, in a practical situation, only

a finite amount of training data is available and modeling can be difficult if the

feature dimensionality is high. The dimension of the feature vectors described in

the previous section is at least 100. Directly using the feature vectors to estimate

the structure of the person and the kinematics of gait is clearly not advisable. We

propose two different approaches to model the structure and kinematics of gait viz.

an indirect approach and a direct approach. The choice of nomenclature will become

apparent in the following discussion.

4.1. Approach 1: Indirect Approach

In this approach we pick N exemplars (or stances) E = {e1, · · · , eN} from the pool

of images that will minimize the error in representation of all the images of that

person. different starting positions). In order to do this, we divide each gait cycle

into N equal segments. We pool the image features corresponding to the ith segment

for all the cycles. The centroids (essentially the mean) of the features of each part

were computed and denoted as the exemplar for that part. Doing this for all the N

segments gives the optimal exemplar set E = {e∗
1, · · · , e∗N}. The next issue is how

to choose N . In problems like image compression, it is a common practice to look

at the rate-distortion curves to examine the marginal reduction in the distortion as

the bits per pixel are increased. We found that increasing N beyond 5 or 6 does not

lead to a significant drop in distortion.

In order to reliably estimate the gait kinematics we propose a novel way of com-

pactly encoding the observations observations. Let x(t) denote the feature extracted

from the image at time t. The distance of x(t) from the corresponding exemplars

en ∈ E can be computed to build a frame-to-exemplar distance (FED) vector, f(t),

which serves as a lower N -dimensional representation of the image at time t. For

instance, for the jth individual we compute the nth element of the FED vector as

[fX
j

j (t)]n = d(xj(t), ej
n), (2)

where, t ∈ {1, · · · , T}, ej
n denotes the nth exemplar of the jth person and n ∈

{1, · · · , N}. Thus, fX
j

j (t) constitutes an observation vector for person j. Similarly,

fX
i

j (t) represents the observation sequence of the person i encoded in terms of the

exemplars of person j. Note that for a frame at the start of the gait cycle, the

first element of the observation vector will be smaller in magnitude as compared

to the remaining four elements. As time progresses, the first element will increase

in magnitude because the frame moves closer to the second stance. This temporal

variation in the FED vector components corresponds precisely to the transition

across exemplars. In particular it is possible to look upon the FED vector sequence

fX
j

j (t) as the observed manifestation of the transition across exemplars (a hidden

process). An HMM is appropriate for such a signal. HMMs 21 use a Markov process

to model the changing statistical characteristics that are manifested in the actual
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observations. For the gait problem, the exemplars can be considered as analogues

to the states of the HMM while the FED vector sequence can be considered as

the observed process. Since the feature vectors are transformed to the intermediate

FED vector representation, we refer to this approach as an indirect approach. In the

proposed model for gait, the primary HMM parameters of interest are the number

of states, the initial probability vector (π), the transition probability matrix (A) and

the output probability distribution B which we model as a continuous probability

distribution. λ = (A, B, π) will be used to compactly represent the HMM.

In order to recognize an unknown person the FED vector sequence fYj (t) is

computed for all j ∈ {1, · · · , M} for him/her using (2). The likelihood that the

observation sequence fYj was generated by the HMM corresponding to the jth person

can be deciphered by using the forward algorithm 21 as

Pj = log(P (fYj |λj)) (3)

We repeat the above procedure for every person in the database thereby producing

Pj , j ∈ {1, · · · , M}. If the unknown person was m, Pm would be expected to be

the largest among all Pj ’s since the distance between Y and the stances of person

m will be smaller than that between Y and any other person. Also the pattern of

transitions between stances/states for Y will be closest to that for person m.

4.2. Approach 2: Direct Approach

In this approach we use the feature vector in its entirety to estimate the HMM λ =

(A, B, π) for each person. Hence we refer to this approach as the direct approach.

One of the important issues in training is learning the observation probability B.

As discussed before, the reliability of the estimated B depends on the number of

training samples available and the dimension of the feature vector. In order to

deal with the high dimensionality of the feature vector, we propose an alternative

representation for B. As discussed in the previous section it is possible, during

a gait cycle, to identify certain distinct phases or stances. We build a structural

representation for a person by picking N exemplars (or stances) from the training

sequence, X = {X(1), · · · ,X(T )}. We now define B in terms of the distance of this

vector from the exemplars as follows.

bn(X(t)) = P (X(t)|en) = βe−αD(X(t),en) (4)

The probability, P (X(t)|en) is defined as a function of D(X(t), en), the distance of

the feature vector X(t) from the nth exemplar, en. The motivation behind using

an exemplar-based model in the above manner is that the recognition can be based

on the distance measure between the observed feature vector and the exemplars.

During the training phase, a model is built for all the subjects in the gallery. Note

that B is completely defined by E if α and β are fixed beforehand.

An initial estimate of E and λ is formed from X , and these estimates are refined

iteratively using Expectation-Maximization 22. An initial estimate of an ordered set
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of exemplars from the sequence as described in Section 4.1. A corresponding initial

estimate of the transition matrix, A(0) (with A
(0)
j,j = A

(0)
j,j mod N+1 = 0.5, and all

other A
(0)
j,k = 0) is also obtained. The initial probabilities π

(0)
n are set to be equal

to 1/N . The iterative refinement of the estimates is performed in two steps. In the

first step, a Viterbi evaluation 21 of the sequence is performed using the current

values for the exemplars and the transition matrix. We can thus cluster feature

vectors according to the most likely state they originated from. Using the current

values of the exemplars, E (i) and the transition matrix, A(i), Viterbi decoding on the

sequence X yields the most probable path Q = {q(i)(1), q(i)(2), . . . , q(i)(T )}, where

q(i)(t) is the estimated state at time t and iteration i. Thus the set of observation

indices, whose corresponding observation is estimated to have been generated from

state n is given by T
(i)

n = {t : q(i)(t) = n}. The updated values of exemplars can be

shown to be:

e(i+1)
n =

∑
t∈T

(i)
n

X̃(t) (5)

Given E(i+1) and A(i), we can calculate A(i+1) using the Baum-Welch algorithm 21.

We set π
(i+1)
n = 1

N
at each iteration. Thus we can iteratively refine our estimates of

the HMM parameters. It usually takes only a few iterations to obtain an acceptable

estimate.

Given the feature vector sequence of the unknown person, Y , and the exemplars

and HMM model parameters for the different people in the database, the likelihood

that the observation sequence was produced by the jth individual in the database

is computed using the forward algorithm as

Pj = log(P (Y|λj)). (6)

Note that λj implicitly includes the exemplar set corresponding to person j. The

difference between the direct and indirect methods is that in the former the feat ure

vector is directly used as the observation vector for the HMM whereas in the latter,

the FED is used as the observation vector. We present the results of both our meth-

ods and a comparative analysis on the USF dataset. Different probe sequences for

the experiments along with the cumulative match scores are given in Table 3 for the

baseline algorithm 19, our direct and indirect approaches. The image quality for the

USF database is worse than the previous two databases in terms of resolution and

amount of noise. We experimented with both the width feature as well as the bina-

rized silhouette for the USF dataset. However, the extraction of the outer contour

in this case is not reliable and the width vectors were found to be noisy. In Table 3,

we report only the results of our methods using the silhouettes as the image feature.

From Table 3 we observe that the direct method is more robust to the presence of

noise than the indirect method. We also note that the recognition performance suf-

fers most due to differences in surface and background characteristics, and least due

to difference in viewing angle. Results from other research groups using this data

can be found in 8 and websites (http://degas.umiacs.umd.edu/links.html). From
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Tables 2 and 3, we note that the HMM approach indeed surpasses the performance

using the appearance matching method. Recently, the gallery in the USF database

was extended by adding subjects who walked with only one shoe type on grass,

which happened to be labelled as Shoe B. Since the shoe type labeling is arbitrary,

they were put in the gallery to increase the gallery size to 122. The results for this

case are reported in 23.

Table 3. Probe Sets and match scores for the USF database using the baseline algo-
rithm and our indirect and direct approaches.

Experiment (Probe) Baseline Indirect Approach Direct Approach
Rank 1 Rank 5 Rank 1 Rank 5 Rank 1 Rank 5

A (G, A,L) 79 96 91 100 99 100

B (G, B, R) 66 81 76 81 89 90

C (G, B, L) 56 76 65 76 78 90

D (C, A, R) 29 61 25 61 35 65

E (C,B, R) 24 55 29 39 29 65

F (C,A, L) 30 46 24 46 18 60

G (C, B, L) 10 33 15 33 24 50

5. View Invariant Gait Recognition

The gait of a person is best reflected when he/she presents a side view (referred to

in this chapter as a canonical view) to the camera. Hence, most of the above gait

recognition algorithms rely on the availability of the side views of the subject. The

situation is analogous to face recognition where it is desirable to have frontal views

of the person’s face. In realistic scenarios, however, gait recognition algorithms need

to work in a situation where the person walks at an arbitrary angle to the camera.

For a person walking along a non-canonical direction, appearance based features

which are used for recognition get distorted. To explain this better we consider the

width feature discussed earlier. Temporal plots of the width-vector for the same

person walking in the canonical and non-canonical(θ = 45) direction are shown in

Figures 5 (a) and (b) respectively. A simple gait feature, viz. the stride length or the

maximal separation of the feet, can be derived from the width plots by measuring

the highest intensity in the leg regions(lower halves of the width plot). Clearly the

apparent stride-length is smaller for the non-canonical view. The second effect that

is obvious from the plots is a foreshortening effect as the person walks away from

the camera. In order to obtain good gait recognition performance, it is necessary to

correct for both of these effects through view synthesis. The most general solution

to this problem is to estimate the 3-D model for the person. Features extracted

from the 3-D model can then be used to provide the gait model for the person.

This problem requires the solution of the structure from motion (SfM) or stereo

reconstruction problems 24,25, which are known to be hard for articulating objects.

In the absense of methods for recovering accurate 3-D models, a simple way to
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exploit existing appearance based methods is to synthesize the canonical views of

a walking person. In 26, Shakhnarovich et al. compute an image based visual hull

from a set of monocular views which is then used to render virtual canonical views

for tracking and recognition. Gait recognition is achieved by matching a set of

image features based on moments extracted from the silhouettes of the synthesized

probe video to the gallery. An alternative to synthesizing canonical views is the

work of Bobick and Johnson 27. In this work, two sets of activity-specific static and

stride parameters are extracted for different individuals. The expected confusion

for each set is computed to guide the choice of parameters under different imaging

conditions (viz. indoor vs outdoor, side-view vs angular-view etc). A cross-view

mapping function is used to account for changes in viewing direction. The set of

stride parameters (which is smaller than the set of static parameters) is found to

exhibit greater resilience to viewing direction. Representation using such a small set

of parameters may not give good recognition rates on large databases.

In this section we present a view-invariant gait recognition algorithm for the

single camera case. Consider a person walking along a straight line which subtends

an angle θ with the image plane (AC in Figure 4). If the distance, Z0, of the

person from the camera is much larger than the width, ∆Z, of the person, then it

is reasonable to replace the scaling factor f
Z0+∆Z

for perspective projection by an

average scaling factor f

Z0
. In other words, for human identification at a distance,

we can approximate the actual 3-D human as a planar object. Assume that we are

given a video of a person walking at a fixed angle θ with a translational velocity

V = [vX , 0, vZ ]T (Figure 4). We show that by tracking the direction of motion, α, in

the video sequence, we can estimate the 3-D angle θ. Using the planarity assumption,

knowing angle θ and the calibration parameters, we can synthesize side-views of the

sequence of images of an unknown walking person without explicitly computing the

3D model of the person.

PLANE

(0,0,0)

Y

f

A

B
C

X

       Z

PROJECTION

(x1,y1)

 
(X1,Y1,Z1)

Z1>>f

Z1

Fig. 4. Imaging Geometry
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Tracking

Assuming that we can find the location (xref , yref ) of the persons head at the

start of such a segment, we use a sequential Monte Carlo particle filter 28 to track

the head of the person to get {(xi(t), yi(t)), wi(t)} where the superscript denotes

the index of the particle and wi(t) denotes the probability weight for the estimate

((xi(t), yi(t)).

Estimation of 3-D Azimuth Angle

Assume that the motion between two consecutive frames in the video sequence

is small. Using the optical flow based SfM equations 29 for constant velocity models

vZ(t) = vZ(6= 0) and vX (t) = vX(6= 0), cot(θ(t)) = vX

vZ
and given the initial position

of the tracked point (xref , yref ) it can be shown that

cot(θ) =
xref − yref cot(α(xref , yref ))

f
, (7)

Knowing (x0, y0),cot(α) and θ, f can be computed as part of a calibration procedure.

View Synthesis

Having obtained the angle θ, we synthesize the canonical view. Let Z denote

the distance of the object from the image plane. If the dimensions of the object are

small compared to Z, then the variation in θ, dθ ≈ 0. This essentially corresponds

to assuming a planar approximation to the object. Let [Xθ, Yθ, Zθ]
′ denote the

coordinates of any point on the person (as shown in the Figure 4) who is walking at

an angle θ ≥ 0 to the plane passing through the starting point [XrefYrefZref ]′ and

parallel to the image plane which we shall refer to, hereafter, as the canonical plane.

Computing the 3-D coordinates of the synthesized point involve a rotation about

the line passing through the starting point followed by a perspective transformation

we can obtain the equations for [x0, y0]
′ as

x0 = f
xθcos(θ) + xref (1 − cos(θ))

−sin(θ)(xθ + xref ) + f

y0 = f
yθ

−sin(θ)(xθ + xref ) + f
, (8)

where x = f X
z

and y = f Y
z

(8) is attractive since it does not involve the 3D

depth; rather it is a direct transformation of the 2D image plane coordinates in

the non-canonical view to get the image plane coordinates in the canonical one.

Thus using the estimated azimuth angle θ we can obtain a synthetic canonical

view using (8). View synthesis provides for a correction of both the foreshortening

and distortion of stride length (see Figures 5 (c) and (d)) and improves the gait

recognition performance appreciably.

5.1. Gait-based Recognition

We present gait recognition results on two databases.

UMD3 database: This consists of 12 people, who walk along straight lines

at different values of azimuth angle θ = 0, 15, 30 and 45. The image sequences
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Fig. 5. Width profile as a function of time for (a) Canonical View (θ = 0);
(b)Unnormalized sequence for θ = 45; synthesized views for: (c) θ = 30 (d) θ = 45.

corresponding to θ = 0 were used as the gallery while the other sequences were used

as a probe. The width profile plot for the canonical view and the view synthesized

from θ = 45 are shown in Figure 5. As can be seen from this plot, our method

has compensated for both the foreshortening effect as well as restored the true leg-

swing. Two consecutive cycles in the canonical view are chosen as the gallery to

be compared with two consecutive gait cycles in the probe sequence. The DTW

technique is used to match a given probe sequence to the different gallery sequences

using binary correlation as a local distance measure and a similarity matrix S =

s(i, j) is obtained, where s(i, j) refers to the similarity between the probe i and

the gallery j. Gait recognition performance for θ = 30 and 450 is shown in Figures

6(a) and (b) using the synthesized and raw images in terms of a cumulative match

characteristic. As noted before, the algorithm results in a broader reproduction

of the torso region. The situation can be remedied by assigning a lower weight

to the torso region when computing the binary correlation or simply ignoring it.

We take the latter approach by computing the binary correlation only over the

lower half of the boxed image. The result using only the leg region is shown as

the dashed lines in the Figure 6. It can be seen that the gait recognition result is

better than what is obtained by using the entire body. Interestingly, 19 notes that

the lower 20 % of the silhouette accounts for roughly 90% of the recognition. To

boost the gait recognition performance further, certain structural characteristics of

the individual that are extracted subsequent to view synthesis e.g. height can be

fused with the leg dynamics. The height of the probe sequence is estimated robustly

from the synthesized video as h(i) = medianhj(i), j = 1 · · ·M M , being the length

of the probe sequence. We fuse height information together with the leg dynamics

by scaling each entry s(i, j) of the similarity matrix by the corresponding height
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ratio, max( h(i)
h(j) , 2 − h(i)

h(j) ). The results for this case are shown as the solid line with

circles in Figure 6. The fact that the gait recognition results are encouraging upto

angles of 45 degrees allows us to hypothesize that it is possible to do reasonable

human identification using gait with only two cameras (installed perpendicular to

each other).
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Fig. 6. Cumulative Match Characteristics for Original and Synthesized images for (a)
θ = 30 (b) θ = 45 for UMD3 database.

NIST database: This consists of 30 people walking along a Σ -shaped walking

pattern as shown in Figure 7(a). There are two cameras looking at the top horizontal

part of the sigma. The camera that is located further away is used in our experiments

since the planar approximation we make is more valid in that case. The segment of

the sigma next to the top horizontal part is used as a probe. This segment is at an

angle 330 to the horizontal part. To do gait recognition we employed the fusion of

the leg-dynamics with the height since it gave the best performance for Database 1.

The gait recognition result is shown in Figure 7(b). As can be seen the recognition

rate is about 60%. One of the reasons for the lower recognition performance in this

case is that the image size is rather small. Note however that the recognition goes

to 100% within 6 ranks.

6. Conclusions and Future Work

In this chapter we investigated the information contained in the video sequences of

human gait and how to extract and represent that information in ways that facil-

itate human identification. Human identification using gait, similar to text-based

speaker identification, involves different individuals performing the same task and a

template-matching approach is suitable for such problems. In situations where the

amount of training data is limited, we showed the utility of a simple feature viz.

the width of the outer contour of the binarized silhouette of the subject and its
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Fig. 7. (a)Σ shaped walking pattern in the NIST database (b)Gait recognition perfor-
mance on the NIST database.

derivatives for gait recognition in a dynamic time warping framework. By virtue of

their deterministic nature, template matching methods have limited noise resilience.

To improve robustness a systematic approach to gait recognition by building repre-

sentations for the structural and dynamic components of gait using exemplars and

hidden Markov models (HMMs) was discussed. Gait can serve as a cue for recog-

nizing people if the database is small. But for large databases, gait information, by

itself, may not be sufficient to recognize an individual. In fact, we must realize that

the gait recognition capability of even humans is limited. However, it can be used to

narrow down the list of potential matches. In a recent paper 30 we demonstrated the

use of gait as a filter to achieve faster human identification by limiting the number

of candidates being passed to a more accurate face recognition algorithm. Gait can

also be used in conjunction with other cues such as the color of clothing etc. for

short time verification problems viz “was this the same person who walked in front

of this camera t minutes ago?”. Finally, a view invariant gait recognition algorithm

which is based on synthesizing a side view of a person from an arbitrary monocular

view was discussed. We also presented a view invariant gait recognition algorithm.

The fact that the gait recognition results are encouraging upto angles of 45 degrees

allows us to hypothesize that it is possible to do reasonable human identification

using gait with only two cameras (installed perpendicular to each other). This could

prove to be less restrictive than the visual hull approach that needs at least 4 cam-

eras. For indoor multiple camera settings it would also be interesting to study the

contribution of 3-D information for gait recognition using multi-camera kinematic

models 31,32.
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