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Abstract—We propose a view-based approach to recognize hu-
mans from their gait. Two different image features have been con-
sidered: the width of the outer contour of the binarized silhouette
of the walking person and the entire binary silhouette itself. To ob-
tain the observation vector from the image features, we employ two
different methods. In the first method, referred to as the indirect
approach, the high-dimensional image feature is transformed to
a lower dimensional space by generating what we call the frame
to exemplar (FED) distance. The FED vector captures both struc-
tural and dynamic traits of each individual. For compact and ef-
fective gait representation and recognition, the gait information in
the FED vector sequences is captured in a hidden Markov model
(HMM). In the second method, referred to as the direct approach,
we work with the feature vector directly (as opposed to computing
the FED) and train an HMM. We estimate the HMM parameters
(specifically the observation probability ) based on the distance
between the exemplars and the image features. In this way, we
avoid learning high-dimensional probability density functions. The
statistical nature of the HMM lends overall robustness to represen-
tation and recognition. The performance of the methods is illus-
trated using several databases.

I. INTRODUCTION

G
AIT refers to the style of walking of an individual. Often,

in surveillance applications, it is difficult to get face or iris

information at the resolution required for recognition. Studies

in psychophysics [1] indicate that humans have the capability of

recognizing people from even impoverished displays of gait, in-

dicating the presence of identity information in gait. From early

medical studies [2], [3], it appears that there are 24 different

components to human gait, and that, if all the measurements are

considered, gait is unique. It is interesting, therefore, to study

the utility of gait as a biometric.

A gait cycle corresponds to one complete cycle from rest

(standing) position to-right-foot-forward-to-rest-to-left-foot-

forward-to-rest position. The movements within a cycle consist

of the motion of the different parts of the body such as head,

hands, legs, etc. The characteristics of an individual are re-

flected not only in the dynamics and periodicity of a gait cycle

Manuscript received August 8, 2002; revised November 5, 2003. This work
was supported by the DARPA/ONR under Grant N00014-00-1-0908. The as-
sociate editor coordinating the review of this manuscript and approving it for
publication was Dr. Nasser Kehtarnavaz.

A. Kale is with the Department of Computer Science, University of Kentucky
Lexington, KY 40506 USA.

A. Sundaresan, N. P. Cuntoor, and R. Chellappa are with the Department of
Electrical and Computer Engineering and Center for Automation Research Uni-
versity of Maryland at College Park, College Park, MD 20740 USA.

A. N. Rajagopalan is with the Department of Electrical Engineering, Indian
Institute of Technology, Madras Chennai 600 036, India.

A. K. Roy-Chowdhury is with the Department of Electrical Engineering, Uni-
versity of California at Riverside, Riverside CA 92521 USA.

V. Krüger is with the Aalborg University, Department of Computer Science,
6700 Esbjerg, Denmark.

Digital Object Identifier 10.1109/TIP.2004.832865

but also in the height and width of that individual. Given the

video of an unknown individual, we wish to use gait as a cue to

find who among the individuals in the database the person

is. For a normal walk, gait sequences are repetitive and exhibit

nearly periodic behavior. As gait databases continue to grow in

size, it is conceivable that identifying a person only by gait may

be difficult. However, gait can still serve as a useful filtering

tool that allows us to narrow the search down to a considerably

smaller set of potential candidates.

Approaches in computer vision to the gait recognition

problem can be broadly classified as being either model-based or

model-free. Both methodologies follow the general framework

of feature extraction, feature correspondence and high-level

processing. The major difference is with regard to feature cor-

respondence between two consecutive frames. Methods which

assume a priori models match the two-dimensional (2-D) image

sequences to the model data. Feature correspondence is automat-

ically achieved once matching between the images and the model

data is established. Examples of this approach include the work

of Lee et al. [4], where several ellipses are fitted to different parts

of the binarized silhouette of the person and the parameters of

these ellipses such as location of its centroid, eccentricity, etc. are

used as a feature to represent the gait of a person. Recognition is

achieved by template matching. In [5], Cunado et al. extract a gait

signature by fitting the movement of the thighs to an articulated

pendulum-like motion model. The idea is somewhat similar to

an early work by Murray [2] who modeled the hip rotation angle

as a simple pendulum, the motion of which was approximately

described by simple harmonic motion. In [6] activity specific

static parameters are extracted for gait recognition. Model-free

methods establish correspondence between successive frames

based upon the prediction or estimation of features related to

position, velocity, shape, texture, and color. Alternatively, they

assume some implicit notion of what is being observed. Exam-

ples of this approach include the work of Huang et al. [7], who use

optical flow to derive a motion image sequence for a walk cycle.

Principal components analysis is then applied to the binarized

silhouette to derive what are called eigen gaits. Benabdelkader et

al. [8] use image self-similarity plots as a gait feature. Little and

Boyd [9] extract frequency and phase features from moments

of the motion image derived from optical flow and use template

matching to recognize different people by their gait.

A careful analysis of gait would reveal that it has two important

components. The first is a structural component that captures the

physical build of a person, e.g., body dimensions, length of limbs,

etc. The second component is the motion dynamics of the body

during a gait cycle. Our effort in this paper is directed toward

deriving and fusing information from these two components. We
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Fig. 1. Width vector profile for several gait cycles of two individuals. (a) Person 1. (b) Person 2.

propose a systematic approach to gait recognition by building

representations for the structural and dynamic components of

gait. The assumptions we use are: 1) the camera is static and the

only motion within the field of view is that of the moving person

and 2) the subject is monitored by multiple cameras so that the

subject presents a side view to at least one of the cameras. This is

because the gait of a person is best brought out in the side view.

The image sequence of that camera which produces the best side

view is used. Our experiments were set up in line with the above

assumptions.

We considered two image features, one being the width of

the outer contour of the binarized silhouette, and the other being

the binary silhouette itself. A set of exemplars that occur during

a gait cycle is derived for each individual. To obtain the obser-

vation vector from the image features we employ two different

methods. In the indirect approach the high-dimensional image

feature is transformed to a lower dimensional space by gener-

ating the frame to exemplar (FED) distance. The FED vector

captures both structural and dynamic traits of each individual.

For compact and effective gait representation and recognition,

the gait information in the FED vector sequences is captured

using a hidden Markov model (HMM) for each individual. In

the direct approach, we work with the feature vector directly

and train an HMM for gait representation. The difference be-

tween the direct and indirect methods is that in the former the

feature vector is directly used as the observation vector for the

HMM whereas in the latter, the FED is used as the observa-

tion vector. In the direct method, we estimate the observation

probability by an alternative approach based on the distance

between the exemplars and the image features. In this way,

we avoid learning high-dimensional probability density func-

tions. The performance of the methods is tested on different

databases.

The organization of the paper is as follows. Section II ex-

plores the issue of feature selection. Section III describes the

two algorithms. In Section IV, we present experimental results

and Section V concludes the paper.

II. FEATURE SELECTION

An important issue in gait is the extraction of appropriate

salient features that will effectively capture the gait characteris-

tics. The features must be reasonably robust to operating condi-

tions and should yield good discriminability across individuals.

As mentioned earlier, we assume that the side view of each in-

dividual is available. Intuitively, the silhouette appears to be a

good feature to look at as it captures the motion of most of the

body parts. It also supports night vision capability as it can be

derived from IR imagery also. While extracting this feature we

are faced with two options.

1) Use the entire silhouette.

2) Use only the outer contour of the silhouette.

The choice of using either of the above features depends upon

the quality of the binarized silhouettes. If the silhouettes are

of good quality, the outer contour retains all the information

of the silhouette and allows a representation, the dimension of

which is an order of magnitude lower than that of the binarized

silhouette. However, for low quality, low resolution data, the

extraction of the outer contour from the binarized silhouette may

not be reliable. In such situations, direct use of the binarized

silhouette may be more appropriate.
We choose the width of the outer contour of the silhouette as

one of our feature vectors. In Fig. 1, we show plots of the width
profiles of two different individuals for several gait cycles. Since
we use only the distance between the left and right extremities of
the silhouette, the two halves of the gait cycle are almost indis-
tinguishable. From here on, we refer to half cycles as cycles, for
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the sake of brevity. In Fig. 1, the axis denotes the frame index,
while the axis denotes the index of the width vector (the row
index). The th horizontal line in the image shows the variations
in the th element of the width vector as a function of time. A
brighter gray-scale indicates a higher value of the width. We ob-
serve that within each cycle, there is a systematic temporal pro-
gression of width vector magnitude, viz. the dynamics. A similar
observation has been made in [10], where the gait patterns are an-
alyzed as Frieze patterns. For the two width profile plots shown
in Fig. 1, the differences are quite visible. For instance, by ob-
serving the bright patterns in the upper region of the two images,
we see that the brightness is more pronounced in the first image
as compared to the second. This area of the plot corresponds to
the swings of the hand. Second, note that the brightness gradient
(which translates to velocity in the video sequence) in the lower
part of the images is more pronounced for Person 1 as compared
to Person 2. This part of the plot corresponds to the swings of the
extremities of the foot. Additionally, note that the height, as well
as the visibility of the neck part of the two persons are different. It
must be pointed out, however, that the differences need not be so
pronounced for all individuals. Thus, the width profile contains
structural and dynamic information peculiar to each individual.
Besides this, the use of the width feature imparts uniformity to
feature representation across different individuals. Also, by defi-
nition, the width vector is translation invariant. Hence, the width
of the outer contour of the silhouette is indeed a potentially good
candidate as a feature.

Given the image sequence of a subject, the width vectors are
generated as follows.

1) Background subtraction as discussed in [11] is first ap-
plied to the image sequence. The resultant motion image
is then binarized into foreground and background pixels.

2) A bounding box is then placed around the part of the mo-
tion image that contains the moving person. The size of
the box is chosen to accommodate all the individuals in
the database. These boxed binarized silhouettes can be
used directly as image features or further processed to de-
rive the width vector as in the next item.

3) Given the binarized silhouettes, the left and right bound-
aries of the body are traced. The width of the silhouette
along each row of the image is then stored. The width along
a given row is simply the difference in the locations of the
right-most and the left-most boundary pixels in that row.

In order to generate the binarized silhouette only, the first two
steps of the above feature are used. One of the direct applications
of the width feature is to parse the video into cycles in order to
compute the exemplars. It is easy to see that the norm of the width
vector show a periodic variation. Fig. 2 shows the norm of the
width vector as a function of time for a given video sequence. The
valleys of the resulting waveform correspond to the rest positions
during the walk cycle while the peaks correspond to the part of
the cycle where the hands and legs are maximally displaced.

III. PROPOSED ALGORITHMS

Given a sequence of image features for person ,

, we wish to build a model for the

gait of person and use it to recognize this person from

different subjects in the database.

Fig. 2. Norm of the width vector as a function of time.

Fig. 3. Stances corresponding to the gait cycle of two individuals. (a) Person 1.
(b) Person 2.

A. Overview

A closer examination of the physical process behind the gen-

eration of gait signature reveals that, during a gait cycle, it is

possible to identify certain distinct phases or stances. In Fig. 3,

we show five frames that we have picked from a gait cycle for

two individuals. In the first stance, the person is at rest. In the

second stance, he is just about to start and his hand is slightly

raised. In the third stance, the hands and the feet are separated,

while in the fourth stance, the hands and feet are displaced to a

maximum. Finally, in the fifth stance, the person is returning to

the rest state. Clearly, every person transits among these succes-

sive stances as he/she walks. Although these stances are generic,

there exist differences not only in their image appearance based

on the physical build of an individual, but also in the way an in-

dividual transits across these stances as he/she walks which rep-

resents the gait dynamics of the individual. A reasonable way to

build a structural representation for a person is to pick exem-

plars (or stances) from the pool of images

that will minimize the error in representation of all the images

of that person. The specifics of choice of exemplars may differ
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for different approaches. Given the image sequence for an un-

known person , these exemplars can be

directly used for recognition as

where represents the image of an unknown person at the

th time instant, while represents the th exemplar of the

th individual. Note, however, that such a simple discrimina-

tion criterion is susceptible to failures not only due to noise,

but, more importantly, due to the presence of structural similari-

ties among people in the database. To improve discriminability,

the dynamics of the data must be exploited. A closer look at

the gait cycle reveals that there is a temporal progression in the

proximity of the observed silhouette to the different exemplars.

Note that at the start of the gait cycle, a frame is closer to the

first exemplar as compared to the other four. As time progresses,

the frame will be closer to the second exemplar as compared to

the others and so on. A similar behavior is reflected with regard

to the remaining exemplars as well. Underlying the proximity

of the silhouette to the exemplars is a probabilistic dependence

across the exemplars. This encompasses information about how

long a gait cycle persists in a particular exemplar as well as the

way in which the gait cycle transits from one exemplar to the

other. For two people who are similar in physical build, this dy-

namic knowledge can be used to improve the recognition per-

formance. Because the transitions are systematic, it is possible

to model this probabilistic dependence by a Markov matrix, as

follows:

(1)

for , . The matrix encodes the dynamics

in terms of state duration densities and transition probabilities.

Often, in a practical situation, only a finite amount of training

data is available and modeling can be difficult if the feature di-

mensionality is high. The dimension of the feature vectors de-

scribed in the previous section is at least 100. Directly using the

feature vectors to estimate the structure of the person and the

dynamics of gait is clearly not advisable. We propose two dif-

ferent approaches to model the structure and dynamics of gait.

B. Approach 1: Indirect Approach

1) Gait Representation: In this approach, we pick exem-

plars (or stances) from the pool of images

that will minimize the error in representation of all the images of

that person. If the overall average distortion is used as a criterion

for codebook design, the selection of the exemplars is said to

be optimal if the overall average distortion is minimized for that

choice. There are two conditions for ensuring optimality. The

first condition is that the optimal quantizer is realized by using

a nearest neighbor selection rule

where represents an image in the training set, is the

distance between , and , while is the number of exemplars.

Fig. 4. Rate-distortion curve for number of exemplars vs distortion.

The second condition for optimality is that each codeword/ex-

emplar is chosen to minimize the average distortion in the

cell , i.e.

where the s represent the Voronoi partitions [12] across the

set of training images. To iteratively minimize the average dis-

tortion measure, the most widely used method is the -means

algorithm [12], [13]. However, implementing the -means al-

gorithm raises a number of issues. It is difficult to maintain a

temporal order of the centroids (i.e., exemplars) automatically.

Even if the order is maintained, there could be a cyclical shift

in the centroids due to phase shifts in the gait cycle (i.e., dif-

ferent starting positions). In order to alleviate these problems,

we divide each gait cycle into equal segments. We pool the

image features corresponding to the th segment for all the cy-

cles. The centroids (essentially the mean) of the features of each

part were computed and denoted as the exemplar for that part.

Doing this for all the segments gives the optimal exemplar

set .

Of course, there is the issue of picking . This is the classical

problem of choosing the appropriate dimensionality of a model

that will fit a given set of observations, e.g., choice of degree

for a polynomial regression. The notion of “best fit” can be pre-

cisely defined by an objective function involving a penalty for

the model complexity. Examples include minimum Bayes in-

formation criterion [14], minimum description length [15], etc.

Similar problems exist for the case where there exists no para-

metric model for the data set, e.g., vector quantization. In prob-

lems like image compression, it is a common practice to look at

the rate-distortion curves to examine the marginal reduction in

the distortion as the bits per pixel are increased. We take a sim-

ilar approach here. In Fig. 4, we plot the average distortion as

a function of the number of centroids for the UMD database. It

can be observed that beyond five centroids, the average distor-

tion does not decrease as rapidly with the increase in the number

of centroids.

In order to reliably estimate the gait dynamics, we propose

a novel way of compactly encoding the observations, while re-

taining all the relevant information. Let denote the feature
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Fig. 5. FED vector components plotted as a function of time.

extracted from the image at time . The distance of from the

corresponding exemplars can be computed to build an

FED, , which serves as a lower ( ) dimensional represen-

tation of the image at time . For instance, for the th individual

we compute the th element of the FED vector as

(2)

where , denotes the th exemplar of the th

person, and . Thus, constitutes an ob-

servation vector for person . Similarly, represents the

observation sequence of the person encoded in terms of the ex-

emplars of person . Note that the dimension of is only

. These observations can be derived for several such gait cy-

cles in the database.

It is clear that, as we examine a gait cycle, the proximity of a

frame from each of the stances changes with time. Correspond-

ingly, the elements of the vector would reflect this fea-

ture. To elaborate this further, note that for a frame at the start

of the gait cycle, the first element of the observation vector will

be smaller in magnitude as compared to the remaining four el-

ements. As time progresses, the first element will increase in

magnitude because the frame moves closer to the second stance.

The magnitude of the second element will decrease as long as

the frame is close to the second stance and then it will start to

increase as well. A similar behavior is observed in the rest of the

elements of the vector. The duration for which an element of this

vector stays low encodes the stance duration density as also the

probability of transition to another stance. Fig. 5 shows the evo-

lution of the different components of the FED vector for

a half-gait cycle. As can be seen, there is a systematic succession

of valleys for the different FED vector components across time.

The FED vector representation is independent of the choice of

features. The distance in (2) will change depending upon the

feature. For example, for the case of the width feature, cor-

responds to the Euclidean distance, whereas for the binary sil-

houette, corresponds to the binary correlation. As described

before, it is possible to model transition across exemplars by a

Markov matrix. For the person , it is possible to look upon the

FED vector sequence as the observed manifestation of

the transition across exemplars (a hidden process). An HMM is

appropriate for such a signal. HMMs use a Markov process to

model the changing statistical characteristics that are manifested

in the actual observations. The state sequence is hidden, and can

only be observed through another set of observable stochastic

processes. Each hidden state of the model is associated with a

set of output probability distributions which can be either dis-

crete probability mass functions or continuous probability den-

sity functions. Details on HMMs can be found in [16]. For the

gait problem, the exemplars can be considered as analogues of

states of the HMM, while the FED vector sequence can be con-

sidered as the observed process. Since the feature vectors are

transformed to the intermediate FED vector representation, we

refer to this approach as an indirect approach. In the proposed

model for gait, the primary HMM parameters of interest are the

number of states, the initial probability vector , the transition

probability matrix , and the output probability distribution

, which we model as a continuous probability distribution. A

brief explanation of each of these terms follows.

1) Initial probability : The initial probability vector is

given by , where represents the probability

of being in state at the beginning of the experiment. For

the gait problem, can be thought of as the probability

of starting in a particular stance.

2) Transition probability matrix : The entries of this ma-

trix are given by where .

This represents the probability of being in state at time

given that the previous state was . An HMM in

which every state of the HMM can be reached from any

other state, viz. every coefficient of is positive, is

referred to as ergodic HMM. When the coefficients have

the property for , i.e., if no transitions are

allowed to states whose indices are lower than the current

state, the HMM is referred to as a left-to-right model.

3) Probability of observation : The probability of ob-

serving symbol while in state is given by . Since

the observations in our experiment are continuous valued,

finding turns out to be a problem of estimating the

underlying probability density function of the observa-

tions. In the literature on HMMs, a Baum–Welch type

of reestimation procedure has been formulated [16] for a

mixture of any log concave or elliptically symmetric den-

sity function (such as the Gaussian).

In this paper, will be used to compactly represent

an HMM.

2) Gait Recognition: The HMM model parameters

serve as a means to represent the gait of different

people. For robust recognition, it is reasonable that one must

examine several gait cycles before taking a decision, i.e., instead

of looking at a single walking cycle, it would be prudent to

examine multiple cycles of a person to derive any conclusion

about his gait. We assume that several gait cycles of an individual

are given. The problem is to recognize this individual from a

database of people whose models for gait are known a priori.

To begin with, the image sequence of the unknown person

is subjected to the same image pro-

cessing operations as the training image sequence, i.e., the
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image feature of this person is generated for each frame

and the FED vector is computed for all

using (2). We wish to compute the likelihood that the observa-

tion sequence was generated by the HMM corresponding

to the th person. This can be deciphered by using the forward

algorithm [16] which computes this log probability as

(3)

Here, is the HMM model corresponding to the person .

We repeat the above procedure for every person in the database

thereby producing , . Suppose that the un-

known person was actually person . We would then expect

to be the largest among all s. A larger value of will

be the result of two factors.

1) The distance between and the stances of person will

be smaller than that between and any other person.

2) The pattern of transitions between stances/states for

will be closest to that for person .

Note that the observed image sequence must be in accordance

with the transition probability matrix as well as the observa-

tion probability in order to yield a larger value for the log

probability. If the values of are observed for a suf-

ficient number of gait cycles of the unknown person, one would

expect that in a majority of cases would be lower as com-

pared to the rest of the s. For smaller databases, the perfor-

mance can be easily examined in terms of a confusion matrix.

For larger databases, a more convenient way of reporting recog-

nition performance is to report the number of times the right

person occurs in the top matches where , i.e., by way

of cumulative match scores (CMS).

C. Approach 2: Direct Approach

1) Gait Representation: In this approach, we use the feature

vector in its entirety to estimate the HMM for

each person. Hence, we refer to this approach as the direct ap-

proach. One of the important issues in training is learning the

observation probability . In general, if the underlying distri-

bution of the data is non-Gaussian, it can be characterized by a

mixture of Gaussians. As discussed before, the reliability of the

estimated depends on the number of training samples avail-

able and the dimension of the feature vector. In order to deal

with the high dimensionality of the feature vector, we propose

an alternative representation for .

As discussed in the previous section it is possible, during

a gait cycle, to identify certain distinct phases or stances. We

build a structural representation for a person by picking

exemplars (or stances) from the training sequence,

. We now define in terms of the

distance of this vector from the exemplars as follows:

(4)

The probability is defined as a function of

, the distance of the feature vector from

the th exemplar, . The motivation behind using an exem-

plar-based model in the above manner is that the recognition

can be based on the distance measure between the observed

feature vector and the exemplars. During the training phase, a

model is built for all the subjects in the gallery. Note that

is completely defined by if and are fixed beforehand.

An initial estimate of and is formed from , and these

estimates are refined iteratively using expectation maximiza-

tion [17]. We can iteratively refine the estimates of and

by using the Baum–Welch algorithm [16] with fixed. The

algorithm to refine estimates of , while keeping and fixed,

is determined by the choice of the distance metric. We describe

in the following sections the methods used to obtain initial

estimates of the HMM parameters, the training algorithm, and,

finally, identification from a probe sequence.

2) Initial Estimate of HMM Parameters: In order to obtain a

good estimate of the exemplars and the transition matrix, we first

obtain an initial estimate of an ordered set of exemplars from

the sequence and the transition matrix and then iteratively refine

the estimate. We observe that the gait sequence is quasiperiodic

and we use this fact to obtain the initial estimate . We first

divide the sequence into cycles. We can further divide each cycle

into temporally adjacent clusters of approximately equal size.

We visualize the frames of the th cluster of all cycles to be

generated from the th state. Thus, we can get an initial estimate

of from the feature vectors belonging to the th cluster of all

cycles. In order to get reliable initial estimates of the exemplars,

we need to robustly estimate the cycle boundaries (see [18]).

A corresponding initial estimate of the transition matrix,

(with , and all other ) is

also obtained. The initial probabilities are set to be equal

to .

3) Training the HMM Parameters: The iterative refine-

ment of the estimates is performed in two steps. In the first

step, a Viterbi evaluation [16] of the sequence is performed

using the current values for the exemplars and the transition

matrix. We can, thus, cluster feature vectors according to

the most likely state they originated from. Using the current

values of the exemplars and the transition matrix ,

Viterbi decoding on the sequence yields the most prob-

able path , where

is the estimated state at time and iteration . Thus, the set

of observation indices, whose corresponding observation is

estimated to have been generated from state is given by

. We now have a set of frames for

each state and we would like to select the exemplars so as to

maximize the probability in (5). If we use the definition in (4),

(6) follows:

(5)

(6)

The actual method for minimizing the distance in (6), however,

depends on the distance metric used. We use the inner product

(IP) distance (7). We have experimented with other distance

measures, namely the Euclidean (EUCLID) distance and the

sum of absolute difference (SAD) distance [18]

(7)
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Fig. 6. Exemplars estimated using IP distance measure.

Note that though and are 2-D images, they are represented

as vectors of dimension for ease of notation. is a

vector of ones. The equations for updating the exemplars is

given by (8). denotes the normalized vector

(8)

The exemplars estimated for one observation sequence are dis-

played in Fig. 6. Given and , we can calculate

using the Baum–Welch algorithm [16]. We set

at each iteration. Thus, we can iteratively refine our estimates of

the HMM parameters. It usually takes only a few iterations to

obtain an acceptable estimate.

4) Identifying From a Test Sequence: Given the sequence

of the unknown person and the exemplars and HMM model

parameters for the different people in the database, we wish to

recognize the unknown person. As before, the given image se-

quence of the unknown person is subjected to the same image

processing operations as the training image sequence to extract

the relevant image features. As explained before, the likelihood

that the observation sequence was produced by the th indi-

vidual in the database is computed using the forward algorithm

as

(9)

Note that implicitly includes the exemplar set corresponding

to person .

IV. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the pro-

posed algorithms on different databases. Our experiments are

aimed at finding how well the two methods perform with re-

spect to several different variations such as size of database,

speed of walking, clothing, illumination, etc. We have consid-

ered normal walk as well as treadmill data for analysis. Our

video sequences were taken from 1) the Carnegie Mellon Uni-

versity (CMU) database, 2) the University of Maryland (UMD)

database, and 3) the University of South Florida (USF) data-

base. For the sake of brevity, we present detailed results of the

indirect approach using width vectors on the CMU and UMD

databases while the results of the direct and indirect approaches

with the binarized silhouette feature will be presented for the

USF database.

Silhouettes and the feature vectors for the person are ex-

tracted using the procedure described in Section II. In general,

the choice of depends on the frame rate. For the UMD and

CMU databases, we chose to be five. However, for the USF

database, which has a higher frame rate, we found that

is a better choice. The Viterbi algorithm was used to identify

the probe sequence, since it is efficient and can operate in the

logarithmic domain using only additions. For every gait cycle,

we rank order the probabilities and the corresponding person

indices in descending order. We then evaluate performance by

letting each person in the database be the unknown and plot

the fraction of times that the right person is within the top

matches as a function of . This curve known as the cumulative

match score characteristic (CMS) was first used in the context

of face recognition by Philips et al. [19].

A. CMU Database

This database1 has 25 people walking at a fast pace and slow

pace on a treadmill and a sequence of people walking while

carrying a ball. There are about 16 cycles in each sequence. Half

of the cycles were used for training and the other half for testing.

The size of the image was 640 480. We did the following

experiments on this database: 1) train on slow walk and test on

slow walk, 2) train on fast walk and test on fast walk, 3) train

on slow walk and test on fast walk, 4) train on fast walk and

test on slow walk, and 5) train on walk carrying a ball and test

on walk carrying a ball. In cases 1), 2), and 5), for each person,

the sequences were divided into two halves, one half used for

training and the other for testing, while in the cases 3) and 4),

the entire slow/fast sequence was used for training and the other

fast/slow sequence was used for evaluation.

The results obtained using the proposed method are given in

Figs. 7 and 8. It can be seen that the right person in the top three

matches 90% of the times for the cases where the training and

testing sets correspond to the same walking styles. Observe that

the results on CMU database when the HMM is trained using

cycles from slow walk and tested using cycles from fast walk,

the result is poor compared to the situation when the training and

testing scenarios are reversed. In an effort to understand this, we

ran an experiment whereby we artificially increased the number

of frames per activity cycle using interpolation and observed

the resulting HMM. It was seen that the matrix tends toward

diagonal dominance. This occurs on account of the fact that the

HMM does not provide adequate representation of extreme tem-

poral durations of activity. The probability of consecutive ob-

servations in state can be written as

1More details about the data are available at the URL http://hid.ri.cmu.edu/
HidEval/evaluation.html
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Fig. 7. Cumulative match characteristic for normal walk and walk when
carrying an object for the CMU database.

Fig. 8. Cumulative match characteristic for across speed testing for the CMU
database.

where is the probability of taking a self loop at state for

times viz. a geometric distribution. As the duration of the ac-

tivity for a fixed , this causes and .

Clearly, the geometric distribution does not represent a realistic

description of the state duration density in our gait-modeling

problem. Similar issues have been raised in the context of speech

recognition and a solution is to explicitly model the distribu-

tion of state duration as has been done by Russell [20]. For the

case of training with fast walk and testing on slow walk, the dip

in performance is caused due to the fact that for some individ-

uals as biomechanics suggests, there is a considerable change in

body dynamics and stride length as a person changes his speed.

For example, observe Fig. 9 which shows a few frames in the

gait cycles of a person in the two scenarios. As is apparent from

the figure, the posture as well as hand swings for the person are

quite different for fast walk and slow walk.

When the subjects are walking with a ball in their hands,

most of the gait dynamics are confined to the leg region. For

this experiment, i.e., case 5), we observe from Fig. 7 that the

Fig. 9. Sample images of a person corresponding to different speeds. (a) Slow
walk. (b) Fast walk.

top match is the correct match 90% of the time which is higher

than the top match score (around 70%) in the normal walk cases.

This suggests that for the purpose of recognition, certain parts of

the body may be more effective than others. In particular, using

the leg motion alone provides more discriminating evidence as

compared to what might be obtained by weighting the evidences

from the hand and leg motion coequally.

B. UMD Database

It would be very useful to evaluate the utility of gait as a bio-

metric in more realistic situations than those prevailing in the

CMU database. To get a more realistic evaluation of gait, we

designed our own experiment at the University of Maryland.

We used outdoor surveillance cameras (Philips G3 EnviroDome

camera system) at a height of 15 ft to capture data. The subjects

were made to walk along a T-shaped path so that they present

a side view to the surveillance cameras. This is in accordance

with our basic assumption in Section I. We collected gait se-

quences of 44 individuals. For most individuals, the training and

test video sequences were collected on different days. The data-

base2 is diverse in terms of gender, age, ethnicity, etc. Moreover,

there was a change in clothing of the people across different

days as well. This, and the fact that the data was collected out-

doors under uncontrolled illumination, provides a realistic sce-

nario for gait analysis. Each video sequence has approximately

ten cycles. One sequence was used for training and the other

for evaluation. The size of the image was 150 75. The result

using the proposed method is shown in Fig. 10(a). It can be seen

that the performance of the method does not degrade with an in-

crease in the database size. The slight drop in performance can

be attributed to changes in clothing conditions of some subjects

and changes in illumination resulting in noisy binarized silhou-

ettes. In Fig. 10(a), the dashed–dotted line represents the chance

recognition rate which corresponds to the line connecting (1,

) and ( , 100), where denotes the number of people

in the gallery. In order to assess the confidence in our recog-

nition capability, we computed the recognition performance by

dropping one subject from the gallery and the probe when we

compute the cumulative match characteristic. Essentially, this

amounts to computing the CMS characteristics by eliminating

row and column from the similarity matrix. By this proce-

dure, we ensure that no individual in the gallery leads to a bias in

2More details about this data are available at the URL: http://degas.umiacs.
umd.edu/hid/.
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Fig. 10. Results for the UMD database using Algorithm 1 (44 people). (a) Cumulative match characteristic. (b) Recognition confidence.

TABLE I
PROBE SETS AND MATCH SCORES FOR THE USF DATABASE USING THE BASELINE ALGORITHM AND OUR INDIRECT AND DIRECT APPROACHES

the performance computation. Having computed the CMS char-

acteristics, thus, we find the variance in the cumulative match

score at every rank. Smaller the value of this variance, the more

reliable is the gait recognition performance. This is shown for

the UMD database in Fig. 10(b).

C. USF Database

Finally, we consider the USF database3 which has been iden-

tified as the gait challenge database [21]. The database has vari-

ations as regards viewing direction, shoe type, and surface type.

Also, the subjects were asked to carry a briefcase for one testing

condition.

We present the results of both our methods and a com-

parative analysis on this dataset. Different probe sequences

for the experiments along with the cumulative match scores

are given in Table I for the baseline algorithm [22] and our

direct and indirect approaches. The image quality for the USF

database was worse than the previous two databases in terms

of resolution and amount of noise. We experimented with both

the width feature as well as the binarized silhouette for the USF

dataset. However, the extraction of the outer contour in this case

is not reliable and the width vectors were found to be noisy.

In Table I, we report only the results of our methods using the

silhouettes as the image feature. and indicate grass and

concrete surfaces, and indicate shoe types, and and

indicate left and right cameras, respectively. We observe that

the direct method is more robust to the presence of noise than

3More details about this database can be found at http://figment.csee.usf.edu/
GaitBaseline/.

TABLE II
RECOGNITION SCORES FOR NEW BASELINE AND HMM (122 PEOPLE)

the indirect method. We also note that recognition performance

suffers most due to differences in surface and background

characteristics, and least due to difference in viewing angle.

Results from other research groups using this data can be found

in [23] and websites (http://degas.umiacs.umd.edu/links.html).

Recently, the gallery in the USF database was extended by

adding subjects who walked with only one shoe type on grass,

which happened to be labeled as Shoe B. Since the shoe type

labeling is arbitrary, they were put in the gallery to increase

the gallery size to 122. Also, the baseline algorithm itself

was modified using a new background processing module.

In Table II, we present results for the new baseline algorithm

and our direct approach. In this table, refers to the probe

sequences captured in November and represents the people

walking with a briefcase. The corresponding CMS curves are

shown in Fig. 11(a).
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Fig. 11. Results for the USF database (122 people). (a) CMS plots. (b) Com-
parison with baseline.

V. CONCLUSION

In this paper, we have presented two approaches to repre-
sent and recognize people by their gait. The width of the outer
contour of the binarized silhouette as well as the silhouette it-
self were used as features to represent gait. In one approach, a
low-dimensional observation sequence is derived from the sil-
houettes during a gait cycle and an HMM is trained for each
person. Gait identification is performed by evaluating the prob-
ability that a given observation sequence was generated by a
particular HMM model. In the second approach, the distance
between an image feature and exemplar was used to estimate
the observation probability . The performance of the methods
was illustrated using different gait databases.
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