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ABSTRACT

Object motions can be represented as a sequence of shape defor-

mations and translations which can be interpretated as a sequence

of points in N -dimensional shape space. These spaces range from

simple 2D translations to more inclusive spaces such as the affine.

In this case, tracking is the problem of inferring the most likely

point in the space for the next frame given a current set of hy-

potheses. A robust method for achieving this is the particle fil-

ter. In this case, likely points within shape space are selected in a

two step process. First, image measurements assign likelihoods

to proposed points. Likely points are then propagated forward

using an dynamical model to derive a set of new points that are

perturbed according to some sampling distribution. These distri-

butions play an important role in tracking performance because

dynamical models are seldom known and a Gauss Markov model

is often assumed for the model dynamics. This paper address the

problems inherent in utilizing uninformed sampling distributions

for visual tracking. We introduce a principled adaptive sampling

approach that takes into account constraints on each component of

the shape vector. Further a more appropriate sampling distribution

that takes place in a linear subspace representing the predominant

motion in the shape space. Results demonstrate improved track-

ing performance in challenging conditions where targets exhibit

changing motion models.

1. INTRODUCTION

Visual tracking for rigid and simple non-rigid objects is the infer-

ence of the current n-dimensional shape vector for a given frame

that corresponds to a position and deformation of the template be-

ing tracked. Noisy observations, occlusion, unknown motion dy-

namics, and several other factors confound the tracking problem.

In recent years, there has been a great deal of interest in apply-

ing particle filtering to to address some of these issues. Particle

filter (PF) tracking, often referred to as condensation tracking or

sequential importance sampling, can provide robust tracking for

stochastic systems beyond that of a traditional Kalman filter that

assumes linear dynamics and Gaussian noise [1, 2, 3].

Given a template of an object to be tracked, the PF tracker

maintains a set of hypotheses (particles) that define a deformation

of the template from the previous frame to its current location and

shape. These deformations can be represented by a shape space

where each hypothesis corresponds to a shape vector. A linear pa-

rameterization of this space such as affine or Euclidean similarity

is typically used in order to encompass a range of expected image

motions while remaining computationally tractable. These linearly

parameterized image-based models work well for rigid objects and

simple non rigid ones.

In PF trackers the number of particles depends on the accuracy

of the estimated model dynamics. Reducing the number of parti-

cles by estimating a finely tuned dynamic model is not trivial [4]

and is sometimes even impossible. Hence a Gauss Markov model

is commonly used. Perturbation of the particle set when using a

Gauss-Markov model translates to adding a Gaussian random vec-

tor (∼ N (0, V )), where V is a covariance matrix whose entries

represent the knowledge about expected motion in the video se-

quence. Furthermore V is usually chosen to be diagonal which

implies that the elements of the shape vector are independent. For

mixed mode motion sequences, choosing V that supports accurate

tracking is not a trivial task, since sampling variances that are ap-

propriate for some motions may not be valid as tracking proceeds.

This work addresses some of the limitations of the Gauss Markov

model in the context of visual tracking. First, we introduce an

adaptive sampling technique, that analyzes the current distribu-

tion of important particles in the shape space. Principal direc-

tions within this space are detected using linear subspace analysis.

Shape vectors are projected to these subspaces and further pertur-

bations occur within these subspace as they emerge. This elim-

inates subjective specification of sampling covariance. Secondly,

we develop sampling distributions that are dependent on the nature

of the components of the shape vector. Results show that these

sampling distributions better represent motion constraints that are

implied in higher dimensional shape space. In addition, they are

more tolerant to initial errors in the estimated parameter variances,

capable of adapting to motions that may emerge in the tracking

sequence, and make more efficient use of a fixed particle budget.

1.1. Related Work

Visual tracking using particle filters [1, 2] has attracted consider-

able interest in the computer vision community. Here we discuss

a few PF algorithms that also utilize aspects of the particle space

itself and do not describe the great number of research efforts that

are contributing to the PF tracking paradigm.

Isard et al.[3] presented an approach (ICondensation) to com-

bine low-level and high-level information by importance resam-

pling with a particle filter. Sullivan [5] et al. showed that random

particles can be guided by a deterministic search based on cues

about each particles potential for failed tracking. Although similar



to our work in that the behavior of the PF is analyzed as tracking

proceeds, this approach focuses on local behavior of a small subset

of the particles. In contrast, the SPF approach analyzes the entire

distribution of the particles after importance sampling to yield an

improved sampling covariance that is consistent for all particles.

More recently Zhou [6] proposed an adaptive appearance and

velocity model. The method augments the random walk model by

an adaptive velocity term which is computed iteratively given the

previous particle configuration. The method described here makes

use of the information contained in the entire distribution of the

particles at a given frame as well as the more appropriate sampling

distributions that can be derived based on constraints on the shape

vector.

2. TECHNICAL DETAILS

Given a sequence of images and a template, tracking generates hy-

potheses about the shape deformation and translation of the tem-

plate in successive frames. Typically, the deformations of the ob-

ject are restricted to a lower dimensional shape space. For com-

putational simplicity, linear parameterizations are used, examples

being the six-dimensional affine space or the Euclidean similarity

group.

For the sake of generality, we assume an N -dimensional shape

space A = L(W, T0) that maps a shape space vector X ∈ R
N to

a deformed template, T ∈ R
NT :

T = WX + T0 (1)

where W denotes a NT ×N shape matrix. The constant offset T0

denotes the template against which shape variations are measured.

Typically templates take the form of either an edge map [1] or an

intensity template [2].

Two important components of PF tracking include a state evo-

lution model p(Xt|Xt−1) and an observation model p(Yt|Xt).

Given the state transition and observation models, the tracker com-

putes the posterior density, p(Xt|Y1:t). Particle filtering approxi-

mates this posterior density by a set of weighted particles {X j
t , wj

t}
with

PM

j=1 wj
t = 1. It can be shown [7] that {Xj

t , wj
t} is prop-

erly weighted with respect to p(Xt|Y1:t). Given the old sample

set {Xj
t−1, w

j
t−1} a new set of particles {X ′j

t } is generated by

sampling from p(Xt|Xt−1). The likelihood of each new particle,

wj
t = p(Yt|X ′j

t ) is then computed by generating a point grid ac-

cording to (1) for each particle and computing a similarity measure

between the template and the region indicated by the grid. Finally

an importance resampling step is carried out on {X ′j
t , wj

t} where

in particles with greater weights may be selected several times and

those with low weights may not be selected at all.

In the following sections we present an adaptive sampling al-

gorithm based on the observation that oftentimes a subspace, S, of

the N -dimensional shape space, A, can correctly describe the mo-

tion exhibited by the object being tracked (Section 2.1). Further-

more, new sampling distributions are derived that more efficiently

sample each of the shape vector components independently (Sec-

tion 2.2).

2.1. Sub-space Analysis of Important Particles

The distribution of the particles following the importance sampling

stage (described above) can reveal information about the true na-

ture of the local motion model. For example, if an object exhibits

pure translation, after importance sampling, most of the “impor-

tant” particles are likely to lie primarily in a subspace of A. The

canonical basis for A is not necessarily the best representation of

the underlying motion at hand. Consequently, a search region im-

plied by V that is defined in the canonical shape space may not

correctly generate “useful” particles in the sense that they may lie

in a part of the space which does not conform to the observed mo-

tion. A solution to this problem is to identify the subspace S of

the shape space A which accounts for most of the variance of the

important particles. In addition, samples for the next perturbation

phase can be drawn from this subspace using distributions along

its basis vectors that may in-fact represent correlated variables in

the original space. Traditional particle filtering ignores such de-

pendencies.

Assuming that the local motion model can be described by a

linear subspace of A, Principal Components Analysis [8] can be

used to discover S. Given the M shape vectors {X1
t , · · · , XM

t },

for X ∈ R
N , we use PCA to compute the principal directions

{U1
t · · · , UN

t } corresponding to the eigenvalues of the scatter ma-

trix arranged in the descending order of their magnitude. Although

not all motions that may be observed can be characterized by a lin-

ear subspace of A (i.e. rotations), search regions provided by the

new basis are more appropriate nonetheless. In Section 2.2 we in-

troduce a more appropriate sampling distribution that can facilitate

the detection of non-linear principal surfaces.

The subspace S = {U1, · · · , Un} spanned by the the top

n(≤ N) eigenvectors is computed in each frame of the tracking

sequence

Zj
t = [U1, · · · , Un]′ (Xj

t − X̄) (2)

where X̄t = 1
M

PM

j=1 Xj
t

Figure 1 depicts a two-dimensional subspace that is automat-

ically discovered in a 3D shape space involving scale and trans-

lations. This subspace consistently predominates throughout the

video sequence due to the fact the vehicle being tracked is exhibits

translational motion only.

Given the principal eigen vectors [U1, · · · , Un], the correspond-

ing eigenvalues can indicate the choice of sampling variance to

achieve more useful search regions. In particular, particles within

subspace S are perturbed

Z′j
t = Zj

t + diag [f(λ1), · · · , f(λn)] r(n, 1) (3)

where r(n, 1) ∼ N (0, 1) and λi is the ith eigenvalue discovered

in the PCA step.

An important issue in the adaptive sampling procedure is the

choice of n. When motion is restricted to a subspace viz. n <
N it is tempting to reduce the dimensionality of the shape space.

However, the algorithm must be capable of responding to changes

in motion dynamics. In particular, if subspace analysis reveals that

motion is occurring in a 2D subspace for some number of frames,

sampling variances must not preclude discovery of motions that

may emerge in the higher dimensional space.

A small sampling variance along all axes is maintained via a

function f(x) that bounds the variances into reasonable values and

retains a residual variance for axes whose variance may be close

to zero

f(x) =
a

1 + e−1.85(x−4.7)
+ b (4)

It should be pointed out that the choice of f is not critical to the

behavior of the algorithm and for results shown here f was fixed

to a = 10, b = 0.05 resulting in variances that are bounded to

0.05-10.
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Fig. 1. Analyzing the important particle distribution for a 3D shape space for the case of pure translation. (a) (b) (c) Example frames from

a vehicle tracking scenario. (d) the particle distribution utilizing the user specified covariance matrix for the frame 2 of the car sequence

(e) the distribution of the particles after the importance resampling step. (f) the particle distribution using our adaptive sampling algorithm.

Compare to the distribution in (e).

After perturbation in S, the new particles, Z are re-projected

to the N dimensional space

X ′′j
t = [U1, · · · , Un] Z′j

t + X̄ (5)

At this stage traditional likelihood computation for particles

{X ′′j
t } is carried out. Following another importance sampling

stage, the next iteration of the subspace algorithm is again applied.

In the next section, we discuss explicit constraints on the sampling

distributions that may be used in these alternative (sub)spaces.

2.2. Appropriate Sampling Distributions for Deformation Pa-

rameters

In most particle filters, an additive noise model with a spherically

symmetric Gaussian distribution is used for ease of implementa-

tion. It is worthwhile examining this model in the context of visual

tracking. For simplicity, let us consider a 4-D Euclidean similarity

shape space that encompasses rotation, scale and translation. The

shape vector in this case can be written as follows

X = [rcosθ rsinθ tx ty]′ (6)

. While a Gaussian distribution is appropriate for translation terms

this is not necessarily the case for the other shape vector compo-

nents. Using functions of random variables it can be shown that the

use of a Gaussian distribution for the first two components imply a

Rayleigh density for r which reflects scale and a uniform density

U ∼ [−π, π] for θ. Clearly, such a choice for θ is overly general

and uninformed. For example, given a particular value of θ in S
this uniform density allows for perturbations that are arbitrarily far

from the current θ.

A more appropriate sampling distribution should be derived

from constraints on each component of the shape vector. Given the

joint distribution fR,Θ(r, θ), the joint distribution of z = rcos(θ)
and w = rsin(θ), can be shown to be:

fZ,W (z, w) = λ ·
∞

X

i=−∞

fR,Θ

“

p

(z2 + w2), tan−1(
w

z
) + 2iπ

”

(7)

where λ = 1√
(z2+w2)

. A useful sampling density for (z, w) can

be obtained by assuming that r and θ are independent. Further-

more assuming that θ ∼ U(a, b) where −π < a < b < π the joint

density may be simplified to

fZ,W (z, w) =
1

p

(z2 + w2)
fR

“

p

z2 + w2
”

Ia,b(z, w) (8)

where Ia,b(z, w) is an indicator function that is zero for val-

ues outside of tan−1(w
z
) ∈ (a, b). The values a and b can be

chosen to reflect how much rotation is expected to occur. Finally

the remaining issue is that of fR(r). The only restriction on fR(r)
is that its support should be the positive real line. For example,

a simple choice would be fR(r) ∼ U(c, d) with c ≥ 0. and

d > 0 . Figure 2 (a) and (b) show the sampling distributions for

the rotation components of a traditional Gaussian model versus the

constrained distribution given above. The initial state is shown as

a black crosshair in each image.

3. EXPERIMENTAL RESULTS

The new sampling distributions were derived as discussed in Sec-

tion 2 and the dynamic subspace particle tracking framework was

applied to a synthetic motion sequence in order to illuminate the

difference between traditional particle filtering and the new method.

Figure 3 shows tracking results for 30 frames of a template under-

going translation and rotation. The figure plots points the rotation
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(a) (b)

Fig. 2. A comparison of 500 tracking particles drawn from two different distributions corresponding to rotation within shape space.

(a) Traditional Gaussian distribution. Initial state shown at center of image. (b) Uniform distribution constrained to a range of θ ∼
U(−π/64, π/16) and r ∼ U(0.9, 1) because this distribution is not symmetric, initial state is shown at bottom right.

components for the new method, traditional particle filtering, and

ground truth.

As shown in the Figure 3, tracking performance using the

same number of particles is improved. Much of the randomness

contained in the MAP estimates generated by the traditional ap-

proach is eliminated. Because the new sampling distributions are

more attuned to the shape vector components, a fixed particle bud-

get can be used more judiciously. The result is both improved

tracking performance and the ability to utilize a smaller number of

particles. Subspace analysis is also capable of efficient sampling

of the shape space. Several experiments in the vehicle tracking

domain have shown significant tracking improvements including

mixed mode motion sequences. Figure 1 is representative of the

types of robust use of shape subspaces achieved.
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Fig. 3. Rotational tracking performance of traditional particle

filter tracking (red squares) versus the new method (blue trian-

gles) shown overlaid on ground truth rotation estimates (black cir-

cles). Points represent MAP estimate of important particles at each

frame. (The shift of the origin to (-1,0) occurs on account of the

particular choice of the Jacobian made by us)

4. CONCLUSIONS AND FUTURE WORK

In this paper we addressed limitations of traditional Gauss-Markov

model which is commonly used in the absence of knowledge of

model dynamics. First, we introduced an adaptive subspace ap-

proach which is able to utilize a limited particle budget more ef-

ficiently by sampling within linear subspaces which represent the

predominant motion. Secondly, new sampling distributions based

on motion constraints were introduced. These enable a more mean-

ingful perturbation of each deformation parameter within the shape

space, thereby providing more robust tracking given a limited par-

ticle budget.

In general, not all image motions can be modeled as subspaces

of the shape space. For instance, rotation is more correctly repre-

sented as a principal curve in the affine shape space rather than

linear subspace. In the future we wish to include principal curve

analysis [9] in our adaptive sampling framework. Another open

question is about the duration of observations are required before

these principle manifolds can be discovered. We expect to investi-

gate this in future work.
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