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Abstract

In this paper, we propose a fast method to recognize hu-
man actions which accounts for intra-class variability in the
way an action is performed. We propose the use of a low
dimensional feature vector which consists of (a) the projec-
tions of the width profile of the actor on to an “action basis”
and (b) simple spatio-temporal features. The action basis is
built using eigenanalysis of walking sequences of different
people. Given the limited amount of training data, Dynamic
Time Warping (DTW) is used to perform recognition. We
propose the use of the average-template with multiple fea-
tures, first used in speech recognition, to better capture the
intra-class variations for each action. We demonstrate the
efficacy of this algorithm using our low dimensional fea-
ture to robustly recognize human actions. Furthermore, we
show that view-invariant recognition can be performed by
using a simple data fusion of two orthogonal views. For
the actions that are still confusable, a temporal discrimina-
tive weighting scheme is used to distinguish between them.
The effectiveness of our method is demonstrated by conduct-
ing experiments on the multi-view IXMAS dataset of persons
performing various actions.

1. Introduction

Human action recognition is an active area of research
in computer vision. This has been motivated by the need
for fast video indexing applications and robust and reliable
automated video surveillance systems. The successful de-
ployment of such video surveillance systems can be of great
use not only in identifying abnormal activity on roads, in
restricted areas, high-security zones, etc., but also in prob-
lems like assisted living. Recognizing human actions from
a video is a challenging task due to several reasons. Firstly,
there is a problem of identifying the action independent of
viewing direction. Secondly, there are differences in the
way an action is performed by different people. The sys-
tem must be capable of incorporating these intra-class vari-
ations. Thirdly, certain actions such as waving one’s hand,

scratching one’s head and so on do not usually last for a
fixed length of time. The system should be able to account
for this temporal uncertainty. Finally all of this has to be
accomplished fast so that the system runs in near real-time.

Several researchers have addressed the problem of hu-
man action recognition. In recent work, Weinland et.
al. [17] address the problem of view invariant action recog-
nition. Their method is based on using a 3D occupancy
grid as a feature to learn a set of exemplars and a HMM.
For recognition, these 3D exemplars are used to produce 2D
image information for matching with the observations. The
work of Lv and Nevatia [10] is similar in spirit to this. One
of the difficulties in using these methods is that synthesiz-
ing the high dimensional 2D images from the 3D exemplars
and comparing them with the observed 2D image can incur
a high computational cost.

One of the problems in building a robust human action
recognition system comes from the fact that the self occlud-
ing articulated nature of the human body results in the non-
rigid behavior in the 2D projections. It is known from com-
mon experience that some views are better suited for recog-
nizing certain activities. For example, hand waving can be
better recognized from a frontal view while pointing, kick-
ing etc. are better recognized from a side view. This sug-
gests that accurate recognition of human actions requires a
minimum of two orthogonally placed synchronized cameras
and using the appropriate camera to recognize a particular
activity. Even in a single camera view, several problems
remain in the quest of achieving a fast and reliable human
action recognition system. An important consideration in
performing action recognition is the choice of features. The
feature chosen must be capable of capturing the unique as-
pects of an action performed by different actors. Further-
more its dimensionality also determines how fast recogni-
tion can be performed. In interests of brevity, we restrict
our discussion here to methods that extract features from
video directly as opposed to those relying on joint angles
[12, 13]. Veeraraghavan et al.[16, 15] propose the use of
shape features and a Procrustes distance as a distance met-
ric. One of the problems of this approach is that the articu-



lated, non-rigid nature of human actions can make the reg-
istration of the point sets pretty challenging. Furthermore,
the high dimensionality of the feature vector makes the dis-
tance computation time consuming. Gorelick et al. [2, 5]
proposed a method in which the Poisson equation is used
to obtain space-time shape features from the silhouette, the
Hessian of which provides information on the shape and ori-
entation of different parts of the human body. This involves
computation of the distance transform which can be time
consuming. The weighted moments of these local features
are used to generate a global 280-dimensional feature vec-
tor that is classified as a particular action by comparing it
with the trained action using the nearest neighbor approach
with Euclidean distance after normalization. In [11], lo-
calized spatio-temporal salient regions are used as features.
The linear time-warped sequence of these features is used
to recognize actions using RVM classifier.

Given a feature vector sequence, the next problem is
to decide what temporal matching method is employed.
Two predominantly used paradigms for performing tempo-
ral matching are Hidden Markov Models (HMMs) and tem-
plate matching using Dynamic Time Warping (DTW). The
use of template matching using DTW has the advantage that
it works well even when the training data is limited. One
of challenges in using DTW is to accommodate intra-class
variations in the activity being performed. Veeraraghavan et
al [16] propose the use of constraints on the warping region
around the nominal activity trajectory in order to model
intra-class variations. Such an enhanced warping region ac-
counts for intra-class temporal and feature variability and
allows for an improved matching of two activity patterns be-
longing to the same class. However, such an enlarged warp-
ing region suffers the risk of good matching of the template
of a particular class with highly variable patterns of another
class, particularly if the two classes are intrinsically confus-
able. Therefore, the question of dealing with improved class
separability or increasing the inter-class discriminability is
not addressed by such a scheme.

In this paper, we address several of the above mentioned
issues. Given the binarized silhouette of a person, we com-
pute the width of the outer contour of the silhouette. We
then project this width vector onto a five-dimensional ac-
tion basis which can be learned easily from the training
data. In addition we add simple spatio-temporal features
such as variance and centroid displacement of the silhou-
ette, yielding a nine-dimensional feature. We show how this
feature vector serves to capture the unique characteristics
of each action, while retaining robustness to noise. When
using DTW for matching, an important issue is to get the
template representation for each action in the training set.
The computational complexity of the recognition process
is highly dependent on these representations. Intuitively,
the average-template which is computed using non-linear

warping of all training templates for a specific action, pro-
vides the least computationally expensive representation of
the action. This amounts to an assumption of unimodality
in action space. However, we show that such an assump-
tion does not necessarily hold for a large class of actions. In
this paper, we explicitly model the multimodality in the ac-
tion space occurring due to significant intra-class variance
using a non-parametric approach first proposed in [6]. In
the presence of multiple views available in the training data,
we propose a simple data fusion method to improve view-
independent recognition. We present experimental results
on the IXMAS dataset which is publicly available on IN-
RIA’s Perception Laboratory webpage1

2. Features

Given the video of an action, background subtraction
[14, 4] can be applied to obtain the binarized silhouettes of
the person. The largest blob in the binary image is assumed
to be the subject. The binarized silhouette of the person
provides a reasonable starting point for performing action
recognition and has been used in [3, 7, 9]. We propose to use
only the outer contour of the binarized silhouette, specifi-
cally the width of the outer contour, as we believe that it
contains adequate information for recognizing actions. As
we shall demonstrate, this feature captures both structural
and dynamic information for an action. Width features for
gait representation have been used by [7, 9].

2.1. Width Features

2.1.1 Width Extraction

The first step in generating the width vector corresponding
to the binary silhouette is to place a bounding box around
the silhouette. The size of the bounding box is set dynam-
ically based on the size of the silhouette. However, there
is little uniformity in the size of the silhouette as different
people have different heights and also, its size varies with
the person’s distance from the camera. It is necessary that
our width vector is of uniform size for later calculations.
In order to normalize the size of the width vector, we uni-
formly scale the size of the bounding box so that it has a
fixed height of hundred pixels, keeping the aspect ratio con-
stant. Morphological close and open operations are applied
to the frame in order to deal with noise due to background
subtraction. The width along a given row is simply the dif-
ference in the locations of the right-most and left-most sil-
houette boundary pixels in that row. The advantage in using
the width profile of a person as a feature is that it encom-
passes structural and dynamic information peculiar to each
action well. Also, use of the width feature provides unifor-
mity to feature representation across different individuals.

1https://charibdis.inrialpes.fr/html/sequences.php
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Figure 1. A plot of the five eigenvectors corresponding to the five
most significant eigenvalues of the PCA of the concatenated width
matrix W . These five vectors form the action basis used to obtain
the five dimensional projections of the hundred dimensional width
vectors.

We denote the hundred dimensional width vector of a given
action at time t as v(t).

2.1.2 Basis Generation & Dimensionality Reduction

One of the important considerations for performing fast
recognition is that dimensionality of the feature be small.
One way to reduce the dimensionality of the width feature
is to project it to a one dimensional basis and use these pro-
jections as a lower dimensional representation. Examples
of such one dimensional bases include DCT or polynomial
bases such as Legendre polynomials. It was noted in [7],
that eigen analysis of the width vector sequences for the
gait of a particular individual reveal that the top 2 or 3 eigen
vectors suffice to capture most of the width variation for the
particular individual. It was also shown that, intuitively, the
first and second eigen-vectors reflect information contained
in the leg and hand motions respectively. Since most hu-
man activities involve some combinations of hand and leg
motion, and the walk activity encompasses both of these,
we propose to build an activity basis using the walk se-
quences of a large number of individuals. We collect width
features from different individuals and perform PCA on the
concatenated width matrix W . Observing that around top
five eigenvectors account for some 95% of the variance, we
choose these eigenvectors to form our action basis E (Fig 1)
for dimensionality reduction. One of the limitations of this
basis is of course it holds only for the side view. However in
our experiments we found that projections on this basis pro-
vide discrimination even for frontal views of activities such
as waving. In future work, we shall examine other bases.

Once the action basis E is generated, the width vector
vi(t) of an action sequence of a person i computed hence-

forth is projected onto this basis as

[w1(t) w2(t) w3(t) w4(t) w5(t)]T = E × (vi(t) − v̄i(t))
(1)

to obtain the five dimensional eigenprojections correspond-
ing to that frame, where v̄i(t) is the mean of vi(t). This
procedure reduces the dimensionality of our features while
retaining most of the necessary information.

2.2. Spatio-temporal Features

As our approach uses the binary silhouette of a person for
action recognition, it is also important to keep a track of how
the structure of the silhouette as a whole varies with time.
Our spatio-temporal features include the displacements of
the centroid cx and cy of the silhouette and the standard
deviations σx and σy in both the X and Y directions re-
spectively. These give us four more features (two each for
centroid displacement and standard deviation) in addition to
the five eigenfeatures. These features give us information
about aspects such as pose and motion of the human silhou-
ette. For certain activities, these features hold the key to
correct recognition. For example, significant centroid mo-
tion in one direction can suggest that the person is walking.
Or, a significant change in the value of standard deviation
could indicate whether a person is sitting or standing. The
centroid displacement is computed as the difference across
five frames since over two consecutive frames there is not
much displacement of the centroid.

We augment our initial five dimensional eigenfeatures by
adding the four spatio-temporal features to obtain a nine di-
mensional feature vector

x = [w1 w2 w3 w4 w5 cx cy σx σy]T (2)

Robustness of the feature vector: In order to test the
robustness of our feature vector we added different amounts
of salt and pepper noise to the data from the IXMAS dataset
and compared the results of using our algorithm. The raw
and the corrupted images used for testing robustness are
shown in Figure 9. The details of the experiment are pre-
sented in Section 4. The results are summarized in Table 1.
As we can see, our chosen feature is very robust to noise.

3. Average-templates with multiple features

Given the features, the next important step is to get a
template representation for each activity to perform a DTW
recognition. The computational complexity of the recogni-
tion process is highly dependent on these representations.

3.1. Computing average-templates

An obvious way to reduce the complexity of recogni-
tion is to use an average or nominal template [18] for that
action. In order to achieve this optimally, the non-linear



warping (or DTW) of a new instance of an activity must
be carried out with already existing instances of the same
activity. Therefore, for each action in the training set we
compute an average pattern or average-template R by map-
ping available training instances T = {T1, T2, . . . , Tn, . . .}
by DTW. Here, the training patterns Tn are composed of
certain number of frames for a given activity. Each of these
frames correspond to the feature vector as given by ( 2). The
accumulated distance D(i, j)for the DTW is defined as:

min[D(i − 2, j − 1) + 3d(i, j),
D(i − 1, j − 1) + 2d(i, j),
D(i − 1, j − 2) + 3d(i, j)] (3)

where i is the frame index of the average reference pattern
R and j is the frame index of the train pattern T . In order
to deal with the disparate components of the feature vector
we use weighted Euclidean distance as the local distance
d(i, j) between the frame i of R and frame j of T . The
weights are computed as the inverse of standard deviation
of each component over the entire training set. If I is the
length of R and J is the length of T . The path is forced to
begin at the point D(1, 1) and end at D(I, J).

Backtracking from the point D(I, J) yields the optimal
path p = [ik, jk] and the corresponding mapped set of fea-
ture vectors [R(ik), T (jk)]. Here k, is the index of a point
on the optimal path p. The average reference pattern Rn for
an activity is computed by the successive weighted averag-
ing of n instances as follows:

Rn(k) = (1 − 1
n

)Rn−1(ik) + (
1
n

)Tn(jk); k = 1 . . .K (4)

where K is the number of points on the optimal path p and
Rn−1(ik) is the average of the previous n − 1 templates.
The new time axis for the instance Rn is computed as:

p1(k) = (1 − 1
n

)ik + (
1
n

)jk; k = 1 . . .K (5)

We linearly transform this new time axis to a constant length
P where P is the average length of all instances of an activ-
ity. The transformation is done as follows:

p2(k) =
P

K
p1(k) (6)

as p2(k) would have non-integer values we define a time
axis p3(k′) where k′ = 1, 2, 3 . . . P . The feature values of
the average pattern Rn(k) are interpolated to get the new
average pattern Rn(k′).

3.2. Combining average templates with multiple
features

The average or nominal activity template is the clearly
the best in terms of computational complexity. This rep-
resentation posits an underlying Gaussianity in the activity

space. Such an assumption for the intra-class variation can
be inaccurate, however. A simple solution to this is to in-
clude multiple templates to represent each class. The down-
side to this is of course, a manifold increase in the compu-
tation time. Clearly, a method that combines the benefits of
both the above approaches would be desirable.

We propose to address this problem by using the
average-template with multiple features representation first
proposed for speech recognition in [6]. In this method the
templates in each action class from which the average is
computed here are aligned using DTW to the average tem-
plate for that action class. The optimal path contains in-
formation about which frame in the training template cor-
responds to which frame in the average-template. Using
this information we bin together all frames corresponding
to each frame of the average-template. Now, the local DTW
distance between a frame of test data and a frame of the
average-template is computed as the minimum of the dis-
tance between the respective test frame and the multiple
feature vectors in the bin corresponding to that frame of
the average. The sequence of warping is dictated by the
average-template. In this way all the variations seen in a
particular action class can be combined. Unlike the multiple
template representation, the average-template with multiple
features is like using a single template representation. If the
number of training templates for each action class is large
these bins corresponding to each frame of the average can
be vector quantized (VQ). Since the database we are using
is not that large, we did not use the VQ clustering.

To summarize the above steps, every k′ in an average
pattern for a category Rn(k′), where k′ = 1, 2, 3 . . . P ,
is associated with a bin of frames of size M . The local
weighted euclidean DTW distance is computed as:

d(k′, q) = min(d(k′, m)) (7)

where, q is the frame of the test sequence of length Q and
m varies from m = 1 . . .M which is nothing but the mth

frame associated with k′ frame the average template Rn(k′)
for a given action class. The local continuity constraint is
given by ( 3).

Discriminative training: There are several activities
such as cross arms/check watch and pick up object/sit down
that can still be confusable. A closer examination of one of
the component trajectories for check watch and cross arms
(Figure 3) reveals that for the first half, the temporal evo-
lution is pretty similar while the second half is very differ-
ent. A simple way to disambiguate such activities, then is to
emphasize the first and last halves differently viz. a greater
weightage is assigned to the latter halves when comparing
the actions. These weights are computed under the frame-
work of Fisher linear discriminative analysis [1].

To do the discriminative training, we first determine the



Figure 2. The Local Continuity constraint and the local distance
filling for DTW
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Figure 3. Plots of the second eigenfeature corresponding to ac-
tions: Check Watch (CW)(dotted) and Cross Arms (CA)(solid).
As we can see the activities are similar in the beginning while
towards the end they differ. Discriminative training provides a
higher temporal weighting for the latter part of the feature when
performing recognition, when an action gets classified as either
CW or CA.

equivalence classes manually, i.e. we group the similar ac-
tions together on the basis of observation, such as check
watch and cross arms. This is a two pass recognition pro-
cess in the first pass we determine whether the test template
belongs to a particular equivalence class or not. If they do
belong to that equivalence class a second pass is done by
weighting the optimal path with variable weights learned
from the training set. The improvements we achieve in the
recognition performance are presented in Section 4.

4. Experimental Results

We use the IXMAS dataset, which is freely available on
INRIA’s Perception Laboratory website, to test our algo-
rithm. The multi-view data in it was obtained with the help
of five synchronized cameras placed at different positions
around the region where several actors performed the set of

actions to be identified. We observed that, though the cam-
eras might have been static, not always did they have the
same view of all the persons performing the actions. That
is, if a camera, say camera 1, viewed a person from a certain
angle, it is not always the case that the same camera had the
same view of another person. In order for our algorithm to
perform recognition, view consistency was necessary while
training. We re-organized the camera views in the dataset
into 6 categories, depending on the direction in which the
person performing the actions faces as follows:

• In view 1, person faces westward (left)

• In view 2, person faces south-westward (bottom-left)

• In view 3, person faces southward (bottom)

• In view 4, person faces south-eastward (bottom-right)

• In view 5, person faces eastward (right)

• In view 6, person faces north-eastward (top-right)

Views corresponding to cases where the person was fac-
ing northward (top) and north-westward (top-left) were ei-
ther unavailable or were not in sufficient number to train our
classifier. The results of using view 1 as gallery and view 5
as probe are shown in Figure 7 and Figure 6. All numbers
in the tables are percentages. The results are as follows:

• For a single average template representing an action
the recognition result is 75.10%.

• For an average template with multiple features the
recognition result is 80.05%.

As we can see, using the average template with multiple
features gives a near 5% improvement in recognition per-
formance. With the use of average with multiple templates
the greatest improvement is seen in the walk activity (a rela-
tive improvement of 50%).This can be reasoned as follows:
For the walk activity, it is clear that all the nine components
of the feature vector will be quite energetic as it involves a
considerable amount of both hand and leg movements. This
increases the likelihood of larger intra-class variability in
the templates for walk sequences. This, in turn, would make
it harder to register each instance with an average template.
More importantly, this also suggests that “walk” provides a
very good activity for performing activity specific human
identification. In general, whenever an average template
with multiple features works better than the average tem-
plate, that activity will be very good for discriminating be-
tween people performing it. This is illustrated in Figure 8.



Figure 4. Confusion matrix for experiment with view1 as gallery
and views 2, 4 and 6 as probes using average template with multi-
ple features.

4.1. Recognition across dissimilar views

Based on the organization of data as explained above, we
conducted experiments by training our system with a cer-
tain view(s) and testing it on different views to demonstrate
its view-invariant capabilities. We summarize the results,
shown in Figure 4and 5, below.

• In the experiment using view 1 as gallery and views 2,
4 and 6 as probes, for an average template with multi-
ple features, the recognition rate is 66.05%.

• In the experiment using views 1 and 3 as galleries and
views 2, 4 and 6 as probes, for an average template
with multiple features, the recognition rate increases
to 76.28%.

In the former case, since the result of training the al-
gorithm with only one view and testing it with three com-
pletely different views is reasonably high, it can be said that
the features grasp various activities quite well. However,
some confusions still prevail between actions like wave and
scratch head, check watch and cross arms, etc.

In the latter case, when performing recognition, we use
the minimum of the DTW score computed between the test
template and the two orthogonal view training templates.
As shown in [8], this is a specialization of the SUM fusion
rule to the MAX rule if the DTW scores are transformed to
probabilities. Using this strategy, most of the previous con-
fusions can be eliminated. Also, there is no change in the
recognition accuracy of actions like ‘get up’ and ‘sit down’
as they are well distinguishable from other actions irrespec-
tive of the viewing angle.

4.2. Robustness to Noise

Our method uses background subtracted silhouettes as
a basis for generating features used in recognition. Often,
the extracted human silhouettes are accompanied by noise

Figure 5. Confusion matrix for experiment with views 1 and 3 as
gallery and views 2, 4 and 6 as probe using average template with
multiple features.

Figure 6. Confusion matrix for experiment with view 1 as gallery
and view 5 as probe using average template with multiple features.

Figure 7. Confusion matrix for experiment with view1 as gallery
and view5 as probe using average template.

from background subtraction which could be due to change
in illumination of the scene, shadows, reflections, etc. In
order to test the robustness of our system to noise, we syn-
thetically added salt & pepper noise of different variances
to the silhouette data (see Figure 9) and performed the same
experiments on them as in the case of noiseless data. Ta-
ble 1 displays the results of our experiments with noisy
data. As illustrated in Table 1, we see that there is no sig-



Figure 8. Illustration of different walking styles. As we can see there are differences in walking styles of people, making average template
with multiple features work better.

Expt/Noise

No Noise -27.99 dB -39.95 dB -48.36 dB
Expt 1 75.10% 75.52% 75.52% 75.93%
Expt 2 80.05% 81.74% 80.91% 81.33%
Expt 3 66.05% 66.67% 66.67% 65.44%
Expt 4 76.28% 76.07% 76.07% 75.87%

Table 1. Table illustrating the effect of noise on recognition re-
sults. Experiment 1 corresponds to the one with view 1 as gallery
and view 5 as probe using average template, Experiment 2 to view
1 as gallery and view 5 as probe using average template with mul-
tiple features, Experiment 3 to view 1 as gallery and views 2, 4
and 6 as probes using average template with multiple features and
Experiment 4 to views 1 and 3 as galleries and views 2, 4 and 6 as
probes using average template with multiple features.

nificant change in the recognition performance on addition
of noise. This change in the results can be considered sta-
tistically insignificant. Any level of noise above the ones
used in our experiments would be too high even for poor
background subtraction and would question the ability of
the background subtraction algorithm used. This shows that
our features are reasonably robust to noise.

4.3. Comparison with MHIs

We also conducted a comparative study between our
method and the method proposed by Bobick et al. [3]. We
chose this method for comparison as it is well-known and
considered seminal in the area of action recognition. This
approach uses Hu Moment Invariants of the Motion History
Images (MHIs) of various activities as features for recogni-
tion. We performed the experiment with view 1 as gallery
and view 5 as probe with our implementation of this tech-
nique. For each action in the gallery we computed the mean
of the Hu moments across people and used the Mahalanobis
distance based vector quantization to classify each instance

from the probe. We found that this system achieved a recog-
nition rate of 33.20% as compared to 80.05% rate of our
system. One of the problems of using MHIs on the cur-
rent database is that it can only deal with linear changes in
speed. The database, however, includes activities such as
check watch, cross arms and scratch head which have tem-
poral segments that can persist for variable duration, while
the other segments are of more or less same duration e.g. for
cross arms, a person’s arms can be crossed for any length of
time while the segments when she raises or lowers her arms
usually do not vary by much. Such actions are best matched
only by using a non-linear time warp such as DTW. Fur-
thermore MHIs also have trouble matching actions such as
check watch vs cross arms (viewed from the side), where
the motion vectors can be confused. Our chosen features
reflect such small differences, and when coupled with DTW
for matching, result in good recognition rates.

Discriminative Training Results: The application of
the discriminative training to the experiment with view 1
as gallery and view 5 as probe for the single average tem-
plate experiment helps when we have check watch and cross
arms as the equivalence class. The number of confusions
between those classes reduce from 5 to 3 which is equiva-
lent to a relative increase of 40%.

5. Conclusion and Future Work

In this paper, we proposed a novel method for fast human
action recognition. The method uses a nine-dimensional
feature vector which comprises of (a) projections of the
width profile on an action basis and (b) simple spatio tem-
poral features. To deal with intra-class variability, we used
the average template with multiple features representation
in the DTW framework. We demonstrated the efficacy of
our method in robustly recognizing human actions. We
also proposed a simple data fusion technique to fuse infor-
mation from two orthogonal views to improve monocular



Figure 9. Figure displaying the different levels of noise added to the original data to test the robustness of our features. The first image is
one without noise. The second, third and fourth images are corrupted with salt & pepper noise of variances 0.01, 0.04 and 0.1 respectively.
Even with these noise levels, our algorithm retains its recognition accuracy.

action recognition performance. Finally, we proposed the
use of the temporal discriminative weighting of the opti-
mal DTW path for disambiguation of activities that resem-
ble each other over certain time intervals and show signif-
icant differences over certain time intervals. The feature
generation and the recognition using the average template
with multiple features comfortably runs at 20 frames per
second on a 1.8 GHz machine and further optimizations are
in progress.

Future work consists of performing continuous action
recognition. Furthermore, we also plan to study optimal
data fusion strategies when multiple cameras are available.
We also plan to study alternative basis functions for reduc-
ing feature dimensionality to achieve further improvements
in recognition scores. Our method revealed how ‘gait’ pro-
vides a useful action for performing activity specific human
identification. It would also be interesting to evaluate the
nine-dimensional feature vector along with some of the con-
cepts discussed here for gait recognition.
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