
Towards a Robust, Real-time Face Processing

System using CUDA-enabled GPUs

Bharatkumar Sharma, Rahul Thota, Naga Vydyanathan, and Amit Kale

Siemens Corporate Technology

SISL - Bangalore, India

{bharatkumar.sharma, rahul.thota, nagavijayalakshmi.vydyanathan, kale.amit}@siemens.com

Abstract—Processing of human faces finds application in
various domains like law enforcement and surveillance, enter-
tainment (interactive video games), information security, smart
cards etc. Several of these applications are interactive and require
reliable and fast face processing. A generic face processing
system may comprise of face detection, recognition, tracking and
rendering. In this paper, we develop a GPU accelerated real-time
and robust face processing system that does face detection and
tracking. Face detection is done by adapting the Viola and Jones
algorithm that is based on the Adaboost learning system. For
robust tracking of faces across real-life illumination conditions,
we leverage the algorithm proposed by Thota and others, that
combines the strengths of Adaboost and an image based paramet-
ric illumination model. We design and develop optimized parallel
implementations of these algorithms on graphics processors
using the Compute Unified Device Architecture (CUDA), a C-
based programming model from NVIDIA. We evaluate our face
processing system using both static image databases as well as
using live frames captured from a firewire camera under realistic
conditions. Our experimental results indicate that our parallel
face detector and tracker achieve much greater detection speeds
as compared to existing work, while maintaining accuracy. We
also demonstrate that our tracking system is robust to extreme
illumination conditions.

Index Terms—Parallel computing, face detection, face tracking,
graphics processors, real-time algorithms.

I. INTRODUCTION

Machine perception of human faces is an active research

topic in disciplines like image processing, pattern recognition,

computer vision and psychology. The interest in facial infor-

mation acquired from images stems from the fact that it can be

extracted non intrusively and provides a valuable cue in several

commercial, security and surveillance systems. Furthermore

detection and recognition of faces is also increasingly used

in interactive video games, virtual reality applications, video-

conferencing etc. A common trend in these applications is

their interactivity and time critical nature, which makes it

important to develop image analysis algorithms that can meet

real-time constraints. In addition, the algorithms should also

be cognizant of the advent of technologically advanced data

capturing devices like smart cameras and the vast amounts of

data that they generate.

A typical face image analysis system comprises of face

detection, recognition, tracking and rendering. Face detection

is used to distinguish faces from the background. Distinct

faces can then be tagged and subsequently recognized across

disparate locations. Alternatively it would also be useful to

track a person in a single camera view to find out to which

camera the identity of the face should be handed off. Such

information is critical to develop situational awareness in

a secure establishment. In order to be useful, these three

components - face detection, recognition and tracking, should

work at speeds close to frame rates. This is especially critical

in a multi-camera scenario where multiple video streams have

to be processed simultaneously. Out of the three components,

face detection and recognition algorithms are computationally

intensive but fortunately are amenable to parallelization.

Recent years have seen the emergence of graphics process-

ing units (GPUs) as sources of massive computing power that

can be harnessed for general purpose computations. For exam-

ple, the NVIDIA GeForce GTX 280 graphics card has a peak

computing rate of 933 Gflops. The Compute Unified Device

Architecture (CUDA) [1] is a C-based programming model

proposed by NVIDIA, that exposes the parallel computing

capabilities of the GPU to application developers in a easy to

use manner. CUDA facilitates programming general purpose

computations on the GPU without requiring developers to

remap algorithms to graphics concepts. It also exposes a fast

shared memory region that can be accessed by blocks of

threads (explained in Section IV), allows for scattered reads

and writes, and optimizes data transfers to and from the GPU.

In this paper, we leverage the compute capabilities of

modern GPUs for accelerating a face processing system that

does face detection and tracking. Face detection is done by

adapting the Viola and Jones algorithm [2] based on Adaboost.

For robust tracking of faces across real-life illumination con-

ditions, we leverage the algorithm proposed by Thota et al.

[3], that combines the strengths of Adaboost and an image

based parametric illumination model. We design and develop

optimized parallel implementations of these algorithms on

graphics processors using CUDA.

We evaluate our face image processing system using both

static image databases as well as using live frames cap-

tured from a firewire camera under realistic conditions. Our

experimental results indicate that our parallel face detector

and tracker achieve much greater detection speeds as com-

pared to existing work, while maintaining accuracy. We also

demonstrate that our tracking system is robust to changing

illumination conditions.

The rest of this paper is organized as follows. The next

section gives an overview of the related work. Section III



describes the Adaboost-based face detection and how we adapt

it to suit our face processing system. It also described the

robust face tracking approach that we use. Section IV gives

a brief overview of the graphics processing hardware and

CUDA. Section V presents our CUDA accelerated parallel

face processing system. Section VI presents our experimental

results and Section VII concludes the paper and outlines

directions for future research.

II. RELATED WORK

Machine perception and processing of human faces has been

a widely researched topic in the domains of image processing

and computer vision. Since the late ninetees, researchers have

proposed several algorithms for detecting human faces [4], [5],

[6], [7], [2]. Out of these, the Viola and Jones [2] face detection

algorithm, which is based on the Adaboost learning system has

been shown to detect faces faster (15 fps for 320×288 images)

than previous approaches, while maintaining the accuracy of

detection even at low resolutions.

With the advent of high speed internet access, a number

of novel additional features such as awareness of the identity

and location of the participants can be included as a part of

a video conferencing system, which can even be extended to

mobile platforms. Earlier the incorporation of such features

which involve face detection and recognition were limited

by the available computational resources. However with the

proliferation of low cost high performance computational

devices, many researchers have begun to explore the usage

of these features. In addition, technological advancements that

result in data capturing devices that operate at high frame rates,

has triggered the need for real-time face processing systems.

Paschalakis and Bober [8] proposed a fast face detection

and tracking system for mobile phones which uses skin color

information for face detection. Xu and Sugimoto [9] also

modeled skin color and used the track to control a PTZ camera

to improve the field of view. Their system yielded detection

and tracking rates of 5 and 10 fps. A recent work by Lozano

and Otsuka [10] proposed a particle filtering based method for

3D tracking of faces using GPUs. However, particle filters rely

on a motion model on shape space and in realistic surveillance

videos, objects do not always obey the motion model. Further,

face detection could become a bottleneck especially while

simultaneously processing frames from multiple cameras. Yet

another work by Ghorayeb et.al [11] describes a hybrid scheme

that does face detection on CPU and GPU using Brooks API

which is built on top of OpenGL. They achieve a frame rate

of 15 fps for 415 × 255 sized frames.

Though the above works aim to improve the speed of face

detection and tracking, we need much faster implementations

to scale to current real-time requirements. Furthermore, most

of these approaches rely on the availability of high resolution

color face images. In surveillance type scenarios resolution of

the face may go as low as 15 × 15 which makes the usage

of a 3D model [10] infeasible. Illumination in such scenarios

can also be erratic which can cause methods based on simple

skin histograms such as [9] [8] to fail.

With the introduction of the CUDA programming model,

it is possible to design better optimized implementations of

face detection and tracking on GPUs that achieve much higher

detection/tracking rates. This is because, as against OpenGL

implementations [11], CUDA has several advantages. CUDA

exposes a fast shared memory region that can be accessed

by blocks of threads (explained in Section IV), allows for

scattered reads and writes, optimizes data transfers to and

from the GPU, and makes it easy to program general purpose

computations on the GPU. In this work, we design and

implement a highly optimized parallel face detection and

tracking system using CUDA on GPUs. Our face processing

system achieves much higher detection rates than previously

proposed solutions. Also to the best of our knowledge, this is

the first attempt to address the problem of face tracking in low

resolution images across illumination changes using GPU.

III. FACE PROCESSING

A. Adaboost-based Face Detection

Viola and Jones [2] pioneered the use of Adaboost [12]

for fast and accurate face detection. The algorithm uses

Adaboost to select the most discriminative features out of an

overcomplete set of Haar features, to separate faces and non-

faces.

Four kinds of rectangular haar features shown in the Fig-

ure 1 are used in the detection algorithm. In each case the

feature value is given by the difference between the sum of

pixel intensities in the bright regions and the sum of pixel

intensities in the dark regions. In a detection test window

of size 24 × 24 pixels we can overlay more than 105 such

rectangular features at different locations and sizes. This

overcomplete feature set gives us an elaborate description of

the image structure in the window considered.

To speed up this feature computation, Viola and Jones

proposed the use of the integral image. The integral image

at location x, y contains the sum of the pixels above and to

the left of x, y

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (1)

Using the integral image any rectangular sum can be computed

in four array references. It is easy to see that the two-rectangle

features defined above can be computed in six array references,

eight in the case of a three-rectangle feature, and nine for four-

rectangle feature. A simple way to construct ”weak” classifiers

from each of these features is by thresholding them

h(U) =

{

1 if pf(U) < pθ

0 otherwise
(2)

where f is the feature thresholded at θ, p is the polarity

indicating the direction of the inequality and U is the 24× 24
pixel test sub-window considered. Adaboost training selects

the best classifiers ht(U) (feature/threshold pairs with the

parity) which collectively minimize the classification error.

A strong classifier output score is the weighted combination

of these weak classifiers H(U) =
∑T

t=1 αtht(U) where the



Fig. 1. Example rectangle features shown relative to the enclosing detection
window. The sum of the pixels which lie within the white rectangles are
subtracted from the sum of pixels in the grey rectangles. Two-rectangle
features are shown in (A) and (B). Figure C) shows a three-rectangle feature,
and (D) a four-rectangle feature.

normalized weight αt of the weak classifier ht(U) is inversely

proportional to its classification error. This strong classifier

score H(U) gives a direct estimate of the probability of the

24 × 24 pixel sub-window U containing a face.

Since the base resolution of the strong classifier has been

trained for the size 24× 24, to detect an arbitrarily sized face

in a given image we either need to scale up the features to

the size of the sub-windows or scale down the sub-windows

to the base resolution. Though scaling the features is a faster

approach (used in [2]) it lacks accuracy, so we resort to scaling

the sub-windows to 24 × 24. This can be efficiently done by

forming a pyramid of images at different scales and we sample

these using 24 × 24 sub-windows.

Typically a 640 × 480 image corresponds to a pyramid of

images at 29 different scales. If these images at different scales

are sampled in x and y directions with step sizes of 4 and 2

pixels respectively we will have to apply the strong classifier

on 4.2×106 sub-windows of size 24×24. In order to overcome

this huge computational burden Viola and Jones proposed a

cascade architecture shown in Figure 2where a series of strong

classifiers are used instead of just one. While the accuracy of a

strong classifier increases with the number of weak-classifiers

combined to generate it, this also increases the corresponding

computation time. The cascade uses simple strong classifiers

with possibly high number of false positives but very low false

negatives, followed by progressively more complicated strong

classifiers. This allows for quickly rejecting a large number

of non-face regions while passing on putative face regions to

the next stages of the cascade for further evaluations. This

greatly reduces the average number of calculations performed

for each subwindow. In our implementation we use a 12 stage

cascade with 1800 distinct weak classifiers at an optimal trade-

off giving a very good accuracy with acceptable compute time.

Fig. 2. Schematic depiction of a the detection cascade. A series of
classifiers are applied to every sub-window. The initial classifier eliminates
a large number of negative examples with very little processing. Subsequent
layers eliminate additional negatives but require additional computation. After
several stages of processing the number of sub-windows have been reduced
radically.

B. Unconstrained Face Tracking

In a streaming video detection of a new face marks the entry

of a new person into the field of view (FOV) of the camera.

Once the new person is detected he/she should be tracked

through the path in the FOV. Appearance change of the object

is a big challenge for tracking which may arise due to various

reasons like illumination and or pose changes. The standard

Adaboost face detector handles uniform illumination changes

using variance normalization. However such a normalization

cannot handle uneven illumination conditions which often

occur in reality. Recently Thota et al [3] proposed a fusion

of Kale and Jaynes [13] illumination compensation with

the basic Adaboost detection score. We discuss their method

briefly here: The image template Tt in the tth frame of the

tracking sequence can be expressed as:

Tt(x, y) = Lt(x, y)R(x, y) = L̃t(x, y)T0(x, y) (3)

where Lt(x, y) denotes the illumination image in frame t and

R(x, y) denotes a fixed reflectance image [14]. In absence of

knowledge of R, the problem of estimating the illumination

image reduces to estimating L̃t w.r.t to the illumination

contained in the image template T0 = L0. ∗ R. Kale and

Jaynes [13] model L̃t as a linear combination of a set of NΛ

Legendre basis functions. Denoting pk(x) as the k th Legendre

basis function for NΛ = 2k + 1, Λ = [λ0, · · · , λNΛ
]T , the

scaled intensity value at a pixel of the template Tt is computed

as:Tt(x, y) = T0(x, y) + T0(x, y)P(x, y)Λ where

P(x, y) =
1

2k + 1
[1 p1(x) · · · pk(x) p1(y) · · · pk(y)] (4)

Rewriting T0 and Tt as vectors we get [Tt]vec = [T0]vec +
[T0]vec ⊗PΛ so that when Λ ≡ 0, Tt = T0. Operator ⊗ refers

to multiplying each row of P by T0(x, y). Given Tt and T0,



the Legendre coefficients that relight Tt to resemble T0 can

be computed by solving the least squares problem:

ATt
Λt ≈ [Tt − T0]vec (5)

where

ATt
= [Tt]vec ⊗ P (6)

so that ATt
∈ R

NΛ+M Given the ground truth of template

locations in successive frames (5) can be used to find the illu-

mination coefficients {Λ1, · · · ,ΛN}. Although the underlying

distribution of these Λts is continuous [13] shows that much of

this information can be condensed down to a discrete number

of important illumination modes or centroids {c1, · · · , ck} via

k−means clustering, without sacrificing tracking accuracy. For

example if a corridor has predominantly three different lighting

conditions, we find that the Legendre coefficient vectors also

cluster into three groups.

The problem of tracking a face can be broken down to

finding the best estimate Ût+1 of the target in the (t + 1)th
frame given the previous estimate Ut. [3] proposes to exhaus-

tively sample subwindows Uk,t in a reasonably sized region

around the previous location (at multiple scales) and pick

the candidate among them which maximizes the following

likelihood criterion:

L(Uk,t, T0) = exp−d2

illum(Uk,t,T0)I(H(Uk,t) > τmin) (7)

where I(.) is an indicator function. It is clear that dillum needs

to be evaluated only on a subset of windows for which the

Adaboost detection score H(Uk,t) exceeds a lower bound τmin

learnt from the ground truth. dillum is the minimum of the

sum of absolute difference (SAD) distances between the stored

template of the person T0 (assumed to be the detected face

sample in the first image) and the relighted window Ut +
Ut ⊗ Pck which is illumination compensated using each of

the centroids ck.

dillum(Ut, T0) = min{c1,···,ck}d(T0, Ut + Ut ⊗ Pck) (8)

The algorithm is inherently parallel since the set of windows

Uk,t around the previous estimate Ut can be processed inde-

pendently. Firstly, all these subwindows in the ROI at different

scales are resized to 24×24 to calculate the detection score on

each of them. Only those which have high enough score value

are further investigated using illumination compensation. This

greatly improves the speed without any compromise over the

tracking accuracy.

IV. OVERVIEW OF GPU ARCHITECTURE AND CUDA

PROGRAMMING MODEL

The graphics processor with its massively parallel archi-

tecture is a storehouse of tremendous computing power. The

Compute Unified Device Architecture (CUDA) [1] is a C-

based programming model from NVIDIA that exposes the

parallel capabilities of the GPU for easy development and

deployment of general purpose computations. In this section,

we briefly describe the salient features of the GPU architecture

and CUDA programming model.

Fig. 3. CUDA Programming and Memory Model. (Courtesy NVIDIA)

The GPU is a data-parallel computing device consisting

of a set of multiprocessing units, each of which is a set of

SIMD (single instruction multiple data) processing cores. For

example, the Quadro FX 5600 GPU has 16 multiple processing

units, each having 8 SIMD cores, resulting in a total of 128

cores. Each multiprocessor has a fixed number of registers and

a fast on-chip memory that is shared among its SIMD cores.

The different multiprocessors share a slower off-chip device

memory. Constant memory and texture memory are read-only

regions of the device memory and accesses to these regions are

cached. Local and global memory refers to read-write regions

of the device memory and its accesses are not cached.

Figure 3 shows the memory and programming model of

CUDA-enabled GPUs. The programming model of CUDA

offers the GPU as data-parallel co-processor to the CPU. In

the CUDA context, the GPU is called device, whereas the

CPU is called host. Kernel refers to an application that is

executed on the GPU device. A CUDA kernel is launched on

the GPU device as a grid of thread blocks that are made up of

threads. Thread blocks can span in one, two or 3 dimensions

and grids can span in one or two dimensions (Figure 3 shows

2-D thread blocks and grids). Threads are uniquely identified

based on their thread block and thread indices. A thread block

is executed on one of the multiprocessors and multiple thread

blocks can be run on the same multiprocessor. Consecutive

threads of increasing thread indices in a thread block are

grouped into what are known as warps which is the smallest

unit in which the threads are scheduled and executed on a

multiprocessor.

V. CUDA ACCELERATED FACE PROCESSING

This section presents our optimized parallel implementation

of face detection and tracking algorithms using CUDA.

A. CUDA-based Parallel Face Detection

As described in Section III-A, face detection comprises of

three main steps: 1) resizing of the original image into a

pyramid of images at different scales 2) calculating the integral

images for fast feature evaluation, and 3) detecting faces using

a cascade of classifiers. Each of these tasks is parallelized and

run as kernels on the GPU, as shown in Figure 4. If we have a

system with multiple graphics cards, it is possible to pipeline



the frames through these three kernels, with the resizing of the

(n + 2)
th

frame being done in parallel with the integral image

calculation of the (n + 1)th frame and the face detection of

the nth frame.

Fig. 4. Pipeline of Face Detection Kernels.

In the next sub-sections, we describe each of these three

kernels in detail.

1) Image resizing: In this step, the original image is resized

to a pyramid of images at different scales, the bottom of the

pyramid being the original image, and the top, a scaled down

image at 24 × 24 resolution, which is the base resolution of

the detector. The height of the pyramid, or in other words,

the number of resized images depends upon the scaling factor

which is 1.1 in our case. This means that starting from the

original image at the bottom of the pyramid, each successive

image is smaller than the previous by a factor of 1.1.

Computation of the pyramid of images, though straightfor-

ward, requires significant time. A simple approach for parallel

image resizing is by allowing different CUDA thread blocks to

compute images at different scales in parallel. Each thread in a

thread block, computes the value of a pixel in an image scale.

However, since CUDA thread blocks have fixed dimensions,

as the image dimensions progressively decrease, larger number

of threads are rendered inactive in this approach.

Alternatively, we can view the pyramid of images as a

one-dimensional contiguous block of image data as shown in

Figure 5. We also create a one-dimensional grid of 1D thread

blocks. Total number of threads spawned will be equal to the

number of thread blocks × the number of threads within a

block. Each of these threads computes the value of one or

more pixels in the 1D block of resized image data in a cyclic

fashion as depicted in Figure 5.

Such a parallel design has several advantages:

• first, it ensures that all threads (except may be at the

fag end of the 1D image data) are all active. Hence the

processing cores of the GPU are kept busy,

• second, as successive threads read successive memory

locations, memory accesses by threads in a half-warp are

coalesced into a single memory transaction in CUDA,

thereby resulting in efficient usage of global memory

bandwidth.

In addition, we store the original image in CUDA textures,

which is cached. Hence, when threads of the same warp

access nearby pixels in the image data, spatial locality is

exploited and data is fetched from the cache, resulting in

improved performance. All other control information such as

resized image dimensions are pre-calculated by the threads

of a thread block in parallel and stored in shared memory for

subsequent retrieval. As shared memory is on-chip and fast and

multiple threads reading the same data from shared memory

results in a broadcast of information rather than multiple reads,

performance is further enhanced.

Fig. 5. One dimensional thread and image view.

2) Integral image calculation: The next step after image

resizing is the calculation of the integral image for each

resized image. The integral image calculation is computa-

tionally expensive especially for large images. Computing

the integral image of a N × N image requires 2 × N2

operations. To parallelize this calculation, we break down the

integral computation into a horizontal prefix sum followed by

a vertical prefix sum on the image data. These two steps are

implemented as two kernels. A 1D view of the image and

threads is used similar to the one described in Section V-A1.

For horizontal prefix sum computation, threads compute the

prefix sum of different rows of the resized images in parallel.

For example, in Figure 6(A), thread 0 computes prefix sum

for row 0 of the first resized image, while thread 1 computes

prefix sum for row 1. Though the data is stored as a 1D

block, for clarity, we depict the prefix sum computations on

2D representations of images. Each thread adds to the value

of the current pixel, the previous pixel value along that row,

and moves forward till the last pixel in the row is reached.

The pixel values are fetched from textures and hence results

in high performance. The number of threads active at a time

is the minimum of the total number of threads spawned and

the summed height of all the resized images.

The vertical prefix sum computation is done on the output

of the horizontal prefix sum computation. It is similar to the

horizontal prefix sum, except that threads compute column

prefix sums in parallel as shown in Figure 6(B). Each thread

adds to the value of the current pixel, the previous pixel value

along that column, and moves forward till the last pixel in the

column is reached. The number of threads active at a time is

the minimum of the total number of threads spawned and the

summed width of all the resized images.

3) Cascaded detection: Cascaded detection, as explained in

Section III-A, applies a cascade of classifiers to sub-windows

(since our base resolution of the detector is 24 × 24, we use

24 × 24 sub-windows) at different locations of the image at

different scales and computes a score for each sub-window.

Sub-windows that pass through all cascades (i.e the scores are

above a certain threshold) are classified as faces.



Fig. 6. Integral Image Calculation: horizontal and vertical prefix sum.

We parallelize the cascaded detection process, by allowing

the simultaneous computation of the feature values and scores

for sub-windows at different locations of the image at different

scales in parallel by multiple threads. This is depicted in

Figure 7, where two threads are shown, thread 0 and thread 1,

which extract sub-windows at different locations and compute

the score. The sub-windows are extracted with a step size

of 4 pixels along the width and 2 pixels along the height.

For fast feature evaluation, the integral images computed

previously are used. Both the integral images and the features

are stored and retrieved from textures to enhance performance.

The cascades are initially stored in textures and transferred to

shared memory for faster access.

In the next section, we present our CUDA-based parallel

face tracking approach that is robust to real-life illumination

conditions.

Fig. 7. Cascaded Detection.

B. CUDA-based Unconstrained Face Tracking

Once a new face is detected in a frame of a video sequence,

it is tracked through subsequent frames. Face tracking, as

explained in Section III-B consists of the following steps:

• extracting sub-windows in the image in the vicinity of

the previous location of the detected face,

• resizing the sub-windows to 24 × 24 resolution,

• calculating the integral images of the resized sub-

windows,

• applying Adaboost-based face detection,

• applying illumination compensation to the detected sub-

windows, and

• computing the next location of the face using template

matching.

Each of the above steps are implemented as CUDA kernels as

described below.

1) Extracting sub-windows in the neighborhood of previous

face location: Instead of applying features over the whole

image, only the region near the previous location of the

detected face is searched for the new location, as shown in

Figure 8. Sub-windows of different scales are extracted from

different pixel locations in the neighborhood of the previous

location of the detected face. The scales are determined

based on the previously tracked/detected face dimensions, for

example sub-windows are extracted at resolutions ranging

from 0.9 to 1.2 times the previous face dimensions. Each

of these sub-windows is then resized to 24 × 24 resolution.

The parallel extraction of sub-windows at different locations

and scales and resizing of these to 24 × 24 resolution is

implemented in a similar manner as the image resizing kernel

described in Section V-A1. As explained previously, such a

one-dimensional view of both the image data and threads

ensures that the GPU cores are kept busy and global memory

bandwidth is used efficiently.

Fig. 8. Extracting sub-windows in the neighborhood of previous face
location.

2) Calculating the integral image and Adaboost-based face

detection: The calculation of the integral images of each of

the resized sub-windows is done similar to the integral image

calculation kernel presented in Section V-A2. The Adaboost

score for each of the sub-windows is then computed. For

tracking, we use a threshold which is much lower as compared

to that used in face detection. This threshold is computed



using training data under bad illumination conditions (as

explained in [3]). The detected sub-windows are then stored

in CUDA textures and accessed by subsequent kernels that do

illumination compensation and template matching.

3) Illumination compensation and template matching: In

this step, each of the sub-windows that are classified as faces

using the Adaboost detector, are re-lighted using the precom-

puted illumination centroids (described in Section III-B which

depend upon the scene lighting conditions. The re-lighting of

each pixel in the detected sub-windows is done in parallel

by multiple threads. Both the detected sub-windows and

the illumination coefficients computed based on the lighting

conditions, are accessed from textures to enhance performance

by exploiting spatial locality. Once the detected sub-windows

are re-lighted, their SAD distance from the template of the

detected face is computed in parallel. The re-lighted sub-

window with the least SAD distance is output as the next

location of the face.

To summarize, in this section, we present an optimized

parallel design for a robust and fast face detection and tracking

system. Our parallel implementation ensures:

• high processor occupancy,

• efficient usage of global and shared memory bandwidths,

and

• intelligent exploitation of spatial locality through use of

textures.

In addition, we use instructions that take lesser number of

clock cycles such as mul24, the fast 24 bit integer multipli-

cation and fdividef . Also, data such as feature information

and classifiers are re-organized and stored in textures using

vector integer and floating point data types so as to enhance

spatial locality.

VI. PERFORMANCE ANALYSIS

The developed face detection and tracking software (a

mixture of C++ and CUDA) has been tested on an In-

tel(R)Xeon(R) CPU, 3.33 GHz host system with 3.25 GB

RAM, having a NVIDIA GeForce GTX 285 GPU. This

GPU features 30 multiprocessors, 16 KB shared memory per

multiprocessor and 1 GB device memory. There can be a

maximum of 512 threads per block and 1024 active threads

per multiprocessor. For comparison purposes, a CPU-only

version of the face detection and tracking algorithm was also

developed (single-threaded) for execution on the host CPU.

A. CUDA-based Parallel Face Detection

We evaluated our parallel face detector under two different

scenarios: a) using a static image database and b) using live

frames captured from a camera. These are described in detail

below.

1) CMU Test Set: The CMU test set, collected as part of

CMU Face Detection Project, is used for evaluating algorithms

that detect frontal and profile views of human faces. 42 frontal

face images having 165 frontal faces were chosen and used

for assessing the accuracy and speed of our face detector. The

results of our detector on CMU dataset are shown in Figure 9.

Results for the live frames

Frame Size 640 × 480
Detection Speed 45 frames/sec

Detection Accuracy 100%

Number of False Positives 22

Fig. 10. Performance of our face detector on live frames taken in (A)
company lab setup, and (B) company corridor. Both setups do not contain
a plain background, but have many variations and other objects, representing
a real world scenario.

We can notice that in many of the images, the faces are not

well illuminated and some of the faces are not purely frontal.

Due to these reasons, 100% detection accuracy is not achieved.

Our numbers for the detection accuracy and false positives

correlates with that quoted by Viola and Jones [2]. As the

CMU test set contains images at different sizes, we report the

detection speed in terms of number of pixels processed per

second.

2) Live frames: Live frames were captured from a camera

and given as a input to our face detector in real time. The cam-

era used was Fire-i Board version monochrome model, with

M12x0.5 lens base. The live frames were taken under realistic

conditions in a company lab environment (Figure 10(A)),

and a company corridor where groups of people walk in

continuously(Figure 10(B)). In total, about 370 frames were

processed.

Figure 10 shows the performance results of our face detector

for the live frames. Our detector achieves 100% detection

accuracy and real-time processing rates, even in the presence

of complex backgrounds.

Figure 11 shows the performance comparison between CPU

only version and our GPU enabled face detector. Images at

various scales (320 × 240, 640 × 480 and 1280 × 960) were

taken from the CMU dataset and live frames from the camera.

The results show the average detection speed(fps) at various

scales. We can see that our CUDA based implementation is

12 to 38 times faster than the CPU version and scales much

better even at higher resolutions.



CMU Test Set Results

Detection Speed 9.09 Million Pixels/sec

Detection Accuracy 81%

Number of False Positives 16

Fig. 9. Performance our face detector on images from the CMU test set.

B. Parallel Unconstrained Face Tracking

In order to test the robustness of our CUDA based face

tracking system, we set up a camera facing a corridor in our

establishment to monitor the flow of people. Input to the face

tracker were frames captured continuously from a firewire

camera under various illumination conditions(indoor and out-

door). For the indoor scenario, we found that the Legendre

coefficients (explained in Section III-B), cluster into three

groups, representing three distinct illumination conditions, as

can be seen in Figure 12. The results of the face tracker

with the calculated three illumination modes/centroids in the

indoor scenario is shown in Figure 12. Face tracker results

in a outdoor scenario under 2 different illumination modes is

shown in Figure 13.

The tracking rate expressed in terms of frames per sec-

ond(fps) of our CUDA based implementation as compared to

CPU and DSP implementations (the CPU and DSP tracking

rates are those quoted by Thota et.al [3]) are as shown in the

Figure 14.

The CUDA implementation implemented is optimized with

negligible loss in precision to obtain a performance of 150

frames per second for the case of one face environment and

can be extended to simultaneously track multiple faces without

much loss of performance. Such a high frame rate can facilitate

tracking of multiple camera feeds in parallel.

The results indicate an important speed boost compared

to the CPU-only version of the algorithm, making the face

detector and tracker eminently suitable for real-time process-

ing. Our CUDA-based parallel face detector and tracker also

outperforms previous implementations discussed in Section II.

VII. CONCLUSIONS

This paper presents a GPU-accelerated real-time and ro-

bust face detection and tracking system. Our optimized face

detection and tracking system is implemented on the GPU

using CUDA, a C-based, easy to use, programming model

proposed by NVIDIA. Face detection is done by adapting

the Viola and Jones algorithm that is based on Adaboost. For

robust tracking of faces in real-life illumination conditions, we



Fig. 12. Face Tracker output under 3 extreme illumination conditions represented by 3 centroids in an indoor environment

Image Dimension
320 × 240 640 × 480 1280 × 960

GPU 90 46 19

CPU 7.4 2.15 0.5

Fig. 11. Figure shows the detection rate in frames per second (fps) of CPU
only version(CPU) face detector and our GPU enabled face detector(GPU)
for images at various resolutions i.e. 320×240, 640×480 and 1280×960.

adopt the algorithm proposed by Thota [3], which combines

Adaboost with an image based parametric illumination model.

Evaluations using both static image databases and live frames

captured from a camera under realistic conditions, indicate

that our parallel face detector and tracker achieve much

Fig. 13. Face Tracker output under 2 illumination modes/centroids in an
outdoor environment. As it can be seen, Centroid-1 corresponds to a shadowed
environment while Centroid-2 corresponds to a sun-lit environment.

greater detection speeds as compared to existing work, while

maintaining accuracy. We also demonstrate that our tracking

system is robust to extreme illumination conditions.

In future, we plan to extend the concepts discussed in this

paper to face recognition in wide area surveillance networks

using GPUs. We are experimenting with application of super

resolution to the tracked faces to improve accuracy of recogni-

tion in the single camera case. Also we are building a camera



Tracking Speed(Frames Per Sec)

GPU 150

DSP 50

CPU 5

Fig. 14. Comparison of tracking rates in terms of frames per second for
different implementations (CPU Vs DSP Vs GPU).(For details please refer to
Section VI-B)

network where in we can use the results of tracking in a single

camera to perform handoffs to other cameras in the building

in order to build situational awareness of locations to answer

questions such as ”who went where?”

REFERENCES

[1] NVIDIA, “Nvidia compute unified device architecture,”
http://www.nvidia.com/object/cuda.html, 2008.

[2] P. Viola and M. J. Jones, “Robust real-time face detection,” Int. J.

Comput. Vision, vol. 57, no. 2, pp. 137–154, 2004.

[3] R. Thota, A. Kalyanasundar, and A. Kale, “Modeling and tracking of
faces in real life illumination conditions,” in Proc. Int. Conf. Acoustics,

Speech and Signal Processing, 2009.

[4] K.-K. Sung and T. Poggio, “Example-based learning for view-based
human face detection,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 20, no. 1, pp. 39–51, 1998.

[5] H. A. Rowley, S. Member, S. Baluja, and T. Kanade, “Neural network-
based face detection,” IEEE Transactions On Pattern Analysis and

Machine intelligence, vol. 20, pp. 23–38, 1998.

[6] H. Schneiderman and T. Kanade, “A statistical method for 3d object
detection applied to faces andcars,” IEEE Conference On Computer

Vision and Pattern Recognition, vol. 1, pp. 746–751, 2000.

[7] M. hsuan Yang, D. Roth, and N. Ahuja, “A snow-based face detector,”
in Advances in Neural Information Processing Systems 12. MIT Press,
2000, pp. 855–861.

[8] S. Paschalakis and M. Bober, “Real-time face detection and tracking
for mobile videoconferencing,” Real Time Imaging, vol. 10, no. 2, pp.
81–94, April 2004.

[9] G. Xu and T. Sugimoto, “Rits eye : A software-based system for realtime
face detection and tracking using pan-tilt-zoom controllable camera,” in
Proc. Int. Conf. Pattern Recognition, 1998, pp. 1194–1197.

[10] O. M. Lozano and K. Otsuka, “Simultaneous and fast 3d tracking of
multiple faces in video by gpu-based stream processing,” in Proc. Int.

Conf. Acoustics, Speech and Signal Processing, 2008, pp. 713–716.

[11] H. Ghorayeb, B. Steux, and C. Laurgeau, “Boosted algorithms for visual
object detection on graphics processing units,” in Proc. of the 7th Asian

Conference on Computer Vision (ACCV ’06), 2006, pp. 254–263.

[12] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” in EuroCOLT ’95:

Proceedings of the Second European Conference on Computational

Learning Theory. London, UK: Springer-Verlag, 1995, pp. 23–37.
[13] A. Kale and C. Jaynes, “A joint illumination and shape model for visual

tracking,” Proceedings of IEEE CVPR, pp. 602–609, 2006.
[14] Y.Weiss, “Deriving intrinsic images from image sequences,” Proc of

ICCV, 2001.


